Computational Genomics

Michael Schatz

Oct 3, 201I
Frontiers in Genomics

Outline

Part I: Schatz Lab Overview

Part 2: Sequence Alignment

Part 3: Genome Assembly

Part 4: Parallel \& Cloud Computing

A Little About Me

Computational Biology

"Computer science is no more about computers than astronomy is about telescopes."
Edger Dijkstra
Computer Science $=$ Science of Computation

- Compute solutions to problems, designing \& building systems
- Computers are very, very dumb, but we can instruct them
- Build complex systems out of simple components

Computational Biology = Thinking Computationally about Biology

- Analysis: Make more powerful instruments, analyze results
- Design: experimental protocols, procedures, systems

Computational Genomics
I. Alignment
2. Assembly
3. Expression
4. Comparative Genomics

Computational Thinking
I. Algorithm
2. Data structure
3. Computational Analysis
4. Computational Modeling

Fature

Mutations \＆Disease

CAAC	CT	17	cc	1	01A1	coA	CCCAT
CA－C	Ct	It	co	1	ctat	ced	ECedt
Q A A C	ET	11	CO	1	CTA1	COA	EGCA 1
cinac	\％	T1	do	T	व1 1	¢号	eccat
casco	01	11	cc	1	elat	eon	cocat
Qasc	07	17	06	1	ctht	608	EOGAT
¢inc	$\square 1$	T1	¢0	1	CIAT	वठ）	tecay
casa	$\square 1$	TT	व0	I	C1AT	cot	E00At
Cinice	01	11	co	1	el 1	cos	CCCAY
catel	Ot	tr	co	1	et\＆	ced	ECEAT
CARC	CT	T1	C ${ }^{\text {c }}$	1	CI同	CCA	CCCAT
CA苛C	CT	T 1	cc	T	CT成	cca	CCCAT
CA 目c	CI	TI	cc	1	c） 1	cca	ECCAT
C A 圆c	CT	TT	cc	T	c）	cca	ECcAT
0 A回c	CT	T＇T	CO	T	C＇T	CCA	CCCAT
C A［inc	CT	TT	cc	T	cT㐌	cGA	CGCAT
c A 国c	Ct	TiT	cc	T	CT國	cca	ECCAT
C A 是c	CT	TT	c	T	CT	CCA	cccat
C A 回c	CT	T＇T	C＇C	T	CT等	CCA	CCCAT

Outline

Part I: Schatz Lab Overview

Part 2: Sequence Alignment

- Exact Matching
- Suffix Arrays
- Bowtie and the BWT

Part 3: Genome Assembly
Part 4: Parallel \& Cloud Computing

Searching for GATTACA

- Where is GATTACA in the human genome?
- Strategy I: Brute Force

I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	\ldots
T	G	A	T	T	A	C	A	G	A	T	T	A	C	C	\ldots
G	A	T	T	A	C	A									

No match at offset I

Searching for GATTACA

- Where is GATTACA in the human genome?
- Strategy I: Brute Force

I	$\mathbf{2}$	3	4	5	6	7	8	9	10	11	12	13	14	15	\ldots
T	G	A	T	T	A	C	A	G	A	T	T	A	C	C	\ldots
	G	A	T	T	A	C	A								

Match at offset 2

Searching for GATTACA

- Where is GATTACA in the human genome?
- Strategy I: Brute Force

I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	\ldots
T	G	A	T	T	A	C	A	G	A	T	T	A	C	C	\ldots
		G	A	T	T	A	C	A	\ldots						

No match at offset $3 .$. .

Searching for GATTACA

- Where is GATTACA in the human genome?
- Strategy I: Brute Force

I	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	6	7	8	9	10	11	12	13	14	15	\ldots
T	G	A	T	T	A	C	A	G	A	T	T	A	C	C	\ldots
								G	A	T	T	A	C	A	

No match at offset 9 <- Checking each possible position takes time

Brute Force Analysis

- Brute Force:
- At every possible offset in the genome:
- Do all of the characters of the query match?
- Analysis
- Simple, easy to understand
- Genome length = n
- Query length =m
- Comparisons: $(\mathrm{n}-\mathrm{m}+\mathrm{I}) * \mathrm{~m}$
- Overall runtime: $O(n m)$
[How long would it take if we double the genome size, read length?] [How long would it take if we double both?]

Expected Occurrences

The expected number of occurrences (e-value) of a given sequence in a genome depends on the length of the genome and inversely on the length of the sequence

- I in 4 bases are G, I in 16 positions are GA, I in 64 positions are GAT, ...
- I in 16,384 should be GATTACA
- $E=n /\left(4^{m}\right) \quad$ [I83,105 expected occurrences]
[How long do the reads need to be for a significant match?]

Brute Force Reflections

Why check every position?

- GATTACA can't possibly start at position I5
[WHY?]

I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	\ldots
T	G	A	T	T	A	C	A	G	A	T	T	A	C	C	\ldots
								G	A	T	T	A	C	A	

- Improve runtime to $\mathrm{O}(\mathrm{n}+\mathrm{m})$
[3B + 7]
- If we double both, it just takes twice as long
- Knuth-Morris-Pratt, 1977
- Boyer-Moyer, 1977, I99I
- For one-off scans, this is the best we can do (optimal performance)
- We have to read every character of the genome, and every character of the query
- For short queries, runtime is dominated by the length of the genome

Suffix Arrays: Searching the Phone Book

- What if we need to check many queries?
- We don't need to check every page of the phone book to find 'Schatz'
- Sorting alphabetically lets us immediately skip $96 \%(25 / 26)$ of the book without any loss in accuracy
- Sorting the genome: Suffix Array (Manber \& Myers, 1991)
- Sort every suffix of the genome

Split into n suffixes

Sort suffixes alphabetically
[Challenge Question: How else could we split the genome?]

Searching the Index

- Strategy 2: Binary search
- Compare to the middle, refine as higher or lower
- Searching for GATTACA
- Lo = I; Hi = I5;

Lo	\#	Sequence	Pos
	1	ACAGATTACC...	6
	2	ACC...	13
	3	AGATTACC...	8
	4	ATTACAGATTACC...	3
	5	ATTACC...	10
	6	C...	15
	7	CAGATTACC...	7
	8	CC...	14
	9	GATTACAGATTACC...	2
	10	GATtACC...	9
	11	TACAGATTACC...	5
	12	TACC...	12
	13	TGATTACAGATTACC...	1
	14	TTACAGATTACC...	4
$\xrightarrow{\mathrm{Hi}}$	15	TTACC...	11

Searching the Index

- Strategy 2: Binary search
- Compare to the middle, refine as higher or lower
- Searching for GATTACA
- Lo = I; Hi = I5; Mid = $(I+I 5) / 2=8$
- Middle $=$ Suffix[8] = CC

Lo$\#$ Sequence Pos 1 ACAGATTACC \ldots 6 2 ACC... 13 3 AGATTACC \ldots 8 4 ATTACAGATTACC... 3 5 ATTACC... 10 6 C... 15 7 CAGATTACC \ldots 7 8 CC... 14 9 GATTACAGATTACC... 2 10 GATTACC \ldots 9 11 TACAGATTACC \ldots 5 12 TACC... 12 13 TGATTACAGATTACC... 1 14 TTACAGATTACC \ldots 4 15 TTACC \ldots 11

Searching the Index

- Strategy 2: Binary search
- Compare to the middle, refine as higher or lower
- Searching for GATTACA
- Lo = I; Hi = I5; Mid = $(I+I 5) / 2=8$
- \quad Middle $=$ Suffix[8] = CC
=> Higher: Lo = Mid + I

Lo$\#$ Sequence Pos 1 ACAGATTACC \ldots 6 2 ACC... 13 3 AGATTACC \ldots 8 4 ATTACAGATTACC... 3 5 ATTACC... 10 6 C... 15 7 CAGATTACC \ldots 7 8 CC... 14 9 GATTACAGATTACC... 2 10 GATTACC \ldots 9 11 TACAGATTACC \ldots 5 12 TACC... 12 13 TGATTACAGATTACC... 1 14 TTACAGATTACC \ldots 4 15 TTACC \ldots 11

Searching the Index

- Strategy 2: Binary search
- Compare to the middle, refine as higher or lower
- Searching for GATTACA
- Lo $=1 ; \mathrm{Hi}=15 ; \operatorname{Mid}=(I+I 5) / 2=8$
- \quad Middle $=$ Suffix[8] = CC
=> Higher: Lo = Mid + I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=\mathrm{I} 5$;

Searching the Index

- Strategy 2: Binary search
- Compare to the middle, refine as higher or lower
- Searching for GATTACA
- Lo $=1 ; \mathrm{Hi}=15 ; \operatorname{Mid}=(I+I 5) / 2=8$
- Middle $=$ Suffix[8] = CC
=> Higher: Lo = Mid + I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=\mathrm{I} 5 ; \mathrm{Mid}=(9+\mathrm{I} 5) / 2=12$
- Middle $=$ Suffix[12] = TACC

Searching the Index

- Strategy 2: Binary search
- Compare to the middle, refine as higher or lower
- Searching for GATTACA
- $\mathrm{Lo}=\mathrm{I} ; \mathrm{Hi}=15 ; \mathrm{Mid}=(1+15) / 2=8$
- \quad Middle $=$ Suffix[8] = CC
=> Higher: Lo = Mid + I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=15 ; \mathrm{Mid}=(9+\mid 5) / 2=12$
- Middle = Suffix[I2] = TACC
=> Lower: Hi = Mid - I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=\mathrm{II}$;

\#	Sequence	Pos
1	ACAGATTACC...	6
2	ACC...	13
3	AGATTACC...	8
4	ATTACAGATTACC.	3
5	ATTACC.	10
6	C...	15
7	CAGATTACC...	7
8	CC...	14
9	GATTACAGATTACC...	2
10	GATTACC...	9
11	TACAGATTACC...	5
12	TACC...	12
13	TGATTACAGATTACC...	1
14	TTACAGATTACC...	4
15	TTACC...	11

Searching the Index

- Strategy 2: Binary search
- Compare to the middle, refine as higher or lower
- Searching for GATTACA
- $\mathrm{Lo}=\mathrm{I} ; \mathrm{Hi}=15 ; \mathrm{Mid}=(\mathrm{I}+\mathrm{I} 5) / 2=8$
- Middle = Suffix[8] = CC
=> Higher: Lo = Mid + I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=15 ; \mathrm{Mid}=(9+\mid 5) / 2=12$
- Middle = Suffix[I2] = TACC
=> Lower: Hi = Mid - I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=\mathrm{II} ; \mathrm{Mid}=(9+\mathrm{II}) / 2=10$
- Middle = Suffix[I0] = GATTACC

Searching the Index

- Strategy 2: Binary search
- Compare to the middle, refine as higher or lower
- Searching for GATTACA
- $\mathrm{Lo}=\mathrm{I} ; \mathrm{Hi}=15 ; \mathrm{Mid}=(\mathrm{I}+\mathrm{I} 5) / 2=8$
- Middle = Suffix[8] = CC
=> Higher: Lo = Mid + I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=15 ; \mathrm{Mid}=(9+15) / 2=\mathrm{I} 2$
- Middle = Suffix[I2] = TACC
=> Lower: Hi = Mid - I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=\mathrm{II} ; \mathrm{Mid}=(9+\mathrm{II}) / 2=10$
- Middle = Suffix[I0] = GATTACC
=> Lower:Hi = Mid - I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=9$;

	\#	Sequence	Pos
	I	ACAGATTACC...	6
	2	ACC...	13
	3	AGATTACC.	8
	4	ATTACAGATTACC.	3
	5	ATTACC.	10
	6	C.	15
	7	CAGATTACC...	7
$\begin{aligned} & \text { Lo } \\ & \underset{\Rightarrow}{\mathrm{HI}} \end{aligned}$	8	CC..	14
	9	GATTACAGATTACC...	2
	10	GATTACC...	9
	11	TACAGATTACC..	5
	12	TACC.	12
	13	TGATTACAGATTACC...	1
	14	TTACAGATTACC..	4
	15	TTACC.	11

Searching the Index

- Strategy 2: Binary search
- Compare to the middle, refine as higher or lower
- Searching for GATTACA
- $\mathrm{Lo}=\mathrm{I} ; \mathrm{Hi}=15 ; \mathrm{Mid}=(\mathrm{I}+\mathrm{I} 5) / 2=8$
- Middle = Suffix[8] = CC
=> Higher: Lo = Mid + I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=15 ; \mathrm{Mid}=(9+15) / 2=12$
- Middle = Suffix[I2] = TACC

$$
\text { => Lower: } \mathrm{Hi}=\text { Mid - I }
$$

- $\mathrm{Lo}=9 ; \mathrm{Hi}=\mathrm{II} ; \mathrm{Mid}=(9+\mathrm{II}) / 2=10$
- Middle = Suffix[I0] = GATTACC
=> Lower: Hi = Mid - I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=9 ; \mathrm{Mid}=(9+9) / 2=9$
- Middle $=$ Suffix[9$]=$ GATTACA... => Match at position 2 !

	\#	Sequence	Pos
	1	ACAGATTACC...	6
	2	ACC...	13
	3	AGATTACC...	8
	4	ATTACAGATTACC..	3
	5	ATTACC.	10
	6	C.	15
	7	CAGATTACC...	7
$\begin{aligned} & \text { Lo } \\ & \text { Hi } \end{aligned}$	8	CC...	14
	9	GATTACAGATTACC...	2
	10	GATTACC...	9
	11	TACAGATTACC...	5
	12	TACC.	12
	13	TGATTACAGATTACC...	I
	14	TTACAGATTACC...	4
	15	TTACC.	11

Binary Search Analysis

- Binary Search

Initialize search range to entire list
mid $=(\mathrm{hi}+\mathrm{lo}) / 2 ;$ middle $=$ suffix[mid]
if query matches middle: done
else if query < middle: pick low range else if query > middle: pick hi range
Repeat until done or empty range

- Analysis
- More complicated method
- How many times do we repeat?
- How many times can it cut the range in half?
- Find smallest x such that: $n /\left(2^{x}\right) \leq 1 ; x=\lg _{2}(n)$
- Total Runtime: $O(m \lg n)$
- More complicated, but much faster!
- Looking up a query loops 32 times instead of 3B
[How long does it take to search 6B or 24B nucleotides?]

Suffix Array Construction

- How can we store the suffix array?
[How many characters are in all suffixes combined?]

$$
S=1+2+3+\cdots+n=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}=O\left(n^{2}\right) \overline{\overline{\bar{\square}}}
$$

- Hopeless to explicitly store 4.5 billion billion characters
- Instead use implicit representation
- Keep I copy of the genome, and a list of sorted offsets
- Storing 3 billion offsets fits on a server (I2GB)
- Searching the array is very fast, but it takes time to construct
- This time will be amortized over many, many searches
- Run it once "overnight" and save it away for all future queries

Sorting

Quickly sort these numbers into ascending order:
14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19
[How do you do it?]

```
6, I3, I4, 29, 3I, 39, 64, 78, 50, 63, 6I, I9
6, I3, I4, 29, 3I, 39, 64, 78, 50, 63, 6I, I9
6, I3, I4, I9, 29, 3I, 39, 64, 78, 50, 63, 6I
6, I3, I4, I9, 29, 3I, 39, 64, 78, 50, 63, 6I
6, I3, I4, I9, 29, 3I, 39, 64, 78, 50, 63, 6I
6, I3, |4, I9, 29, 3|, 39, 50, 64, 78, 63, 6|
6, I3, I4, I9, 29, 3I, 39, 50, 6I, 64, 78, 63
6, I3, I4, I9, 29, 3I, 39, 50, 6I, 63, 64,78
6, I3, I4, I9, 29, 3I, 39, 50, 6|, 63, 64,78
6, I3, I4, I9, 29, 3I, 39, 50, 6I, 63, 64,78
6, I3, I4, I9, 29, 3I, 39, 50, 6I, 63, 64,78
6, I3, I4, I9, 29, 3|, 39, 50, 6|, 63, 64,78
```


http://en.wikipedia.org/wiki/Selection_sort

Selection Sort Analysis

- Selection Sort (Input: list of n numbers)

```
for pos = I to n
    // find the smallest element in [pos, n]
    smallest = pos
    for check = pos+l to n
        if (list[check] < list[smallest]): smallest = check
```

// move the smallest element to the front
tmp $=$ list[smallest]
list[pos] = list[smallest]
list[smallest] = tmp

- Complexity Analysis

$$
T=n+(n-1)+(n-2)+\cdots+3+2+1=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}=O\left(n^{2}\right)
$$

- Outer loop: pos $=I$ to n
- Inner loop: check = pos to n
- Running time: Outer * Inner $=\mathrm{O}\left(\mathrm{n}^{2}\right)$
[4.5 Billion Billion]
[Challenge Questions: Why is this slow? / Can we sort any faster?]

Divide and Conquer

- Selection sort is slow because it rescans the entire list for each element
- How can we split up the unsorted list into independent ranges?
- Hint I: Binary search splits up the problem into 2 independent ranges (hi/lo)
- Hint 2: Assume we know the median value of a list

[How many times can we split of n items a list in half?]

QuickSort Analysis

- QuickSort(Input: list of n numbers) // see if we can quit if (length(list)) <= I): return list
// split list into lo \& hi
pivot $=$ median(list)
lo $=\{ \} ;$ hi $=\{ \} ;$
for ($\mathrm{i}=\mathrm{I}$ to length(list))
if (list[i] < pivot): append(lo, list[i]) else:
append(hi, list[i])

http://en.wikipedia.org/wiki/Quicksort
// recurse on sublists return (append(QuickSort(lo), QuickSort(hi))
- Complexity Analysis (Assume we can find the median in $\mathrm{O}(\mathrm{n})$)

$$
\begin{align*}
& T(n)= \begin{cases}O(1) & \text { if } n \leq 1 \\
O(n)+2 T(n / 2) & \text { else }\end{cases} \\
& T(n)=n+2\left(\frac{n}{2}\right)+4\left(\frac{n}{4}\right)+\cdots+n\left(\frac{n}{n}\right)=\sum_{i=0}^{\lg (n)} \frac{2^{i} n}{2^{i}}=\sum_{i=0}^{\lg (n)} n=O(n \lg n) \tag{~94B}
\end{align*}
$$

QuickSort Analysis

- QuickSort(Input: list of n numbers)
// see if we can quit
if (length(list)) <= I): return list
// split list into lo \& hi
pivot $=$ median(list)
lo $=\{ \} ;$ hi $=\{ \} ;$
for ($\mathrm{i}=\mathrm{I}$ to length(list))
if (list[i] < pivot): append(lo, list[i]) else:
append(hi, list[i])

http://en.wikipedia.org/wiki/Quicksort
// recurse on sublists return (append(QuickSort(lo), QuickSort(hi))
- Complexity Analysis (Assume we can find the median in $\mathrm{O}(\mathrm{n})$)

$$
\begin{align*}
& T(n)= \begin{cases}O(1) & \text { if } n \leq 1 \\
O(n)+2 T(n / 2) & \text { else }\end{cases} \\
& T(n)=n+2\left(\frac{n}{2}\right)+4\left(\frac{n}{4}\right)+\cdots+n\left(\frac{n}{n}\right)=\sum_{i=0}^{\lg (n)} \frac{2^{i} n}{2^{i}}=\sum_{i=0}^{\lg (n)} n=O(n \lg n) \tag{~94B}
\end{align*}
$$

In-exact alignment

I	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	\ldots
T	G	A	T	T	A	C	A	G	A	T	T	A	C	C	\ldots

- Where is GATTACA approximately in the human genome?
- And how do we efficiently find them?
- It depends...
- Define 'approximately'
- Hamming Distance, Edit distance, or Sequence Similarity
- Ungapped vs Gapped vs Affine Gaps, Global vs Local
- Algorithm depends on the data characteristics \& goals
- Smith-Waterman: Exhaustive search for optimal alignments
- BLAST: Hash-table based homology searches
- Bowtie: BWT alignment for short read mapping

Seed-and-Extend Alignment

Theorem: An alignment of a sequence of length m with at most k differences must contain an exact match at least $s=m /(k+l)$ bp long
(Baeza-Yates and Perleberg, I996)

- Proof: Pigeonhole principle
- I pigeon can't fill 2 holes
- Seed-and-extend search
- Use an index to rapidly find short exact alignments to seed longer in-exact alignments - BLAST, MUMmer, Bowtie, BWA, SOAP, ...

[How could you use seed-and-extend with a suffix array?]

Bowtie: Ultrafast and memory efficient alignment of short DNA sequences to the human genome

Slides Courtesy of Ben Langmead
(langmead@umiacs.umd.edu)

Burrows-Wheeler Transform

- Suffix Array is fast to search, but much larger than genome
- BWT is a reversible permutation of the genome based on the suffix array
- Core index for Bowtie (Langmead et al., 2009) and most recent short read mapping applications

Bowtie algorithm

Reference

BWT(Reference)

Query:
AATGATACGGCGACCACCGAGATCTA

Bowtie algorithm

Reference

©00000000000000000000 0000000000000000000000000

BWT(Reference)

Query:
AATGATACGGCGACCACCGAGATCTA

Bowtie algorithm

Reference

BWT(Reference)

Query:
AATGATACGGCGACCACCGAGATCTA

Bowtie algorithm

Reference

BWT(Reference)

Query:
AATGATACGGCGACCACCGAGATCTA

Bowtie algorithm

Reference

BWT(Reference)

Query:
AATGATACGGCGACCACCGAGATCTA

Bowtie algorithm

Reference

BWT(Reference)

Query:
AATGATACGGCGACCACCGAGATCTA

Bowtie algorithm

Reference

BWT(Reference)

Query:
AATGATACGGCGACCACCGAGATCTA

Bowtie algorithm

Reference

BWT(Reference)

Query:
AATGTTACGGCGACCACCGAGATCTA

Bowtie algorithm

Reference

BWT(Reference)

Query:
AATGTTACGGCGACCACCGAGATCTA

Part I:Summary

- Short Read Mapping: Seed-and-extend search of the BWT
- If we fail to reach the end, back-track and resume search
- The beginning of the read is used as high confidence seed
- 100s of times faster than competing approaches, works entirely in RAM
- Algorithms choreograph the dance of data inside the machine
- Algorithms add provable precision to your method
- A smarter algorithm can solve the same problem with much less work
- Computational Techniques
- Binary search: Fast lookup in any sorted list
- Divide-and-conquer: Split a hard problem into an easier problem
- Recursion: Solve a problem using a function of itself
- Indexing: Focus on just the important parts
- Seed-and-extend:Anchor the problem using a portion of it

Break

Outline

Part I:Schatz Lab Overview Part 2: Sequence Alignment

Part 3: Genome Assembly

- Assembly by analogy
- Coverage, read length, and repeats
- Contiging \& Scaffolding
- Assembly Forensics

Part 4: Parallel \& Cloud Computing

Shredded Book Reconstruction

- Dickens accidentally shreds the first printing of A Tale of Two Cities
- Text printed on 5 long spools

It was thevbesther bestimfetsimiesyas thae thorstor	of times, it was the	

- How can he reconstruct the text?
- 5 copies $\times 138,656$ words $/ 5$ words per fragment $=138 \mathrm{k}$ fragments
- The short fragments from every copy are mixed together
- Some fragments are identical

It was the best of
age of wisdom, it was

Greedy Reconstruction

best of times, it was

```
it was the age of
```

it was the age of
it was the worst of
of times, it was the
of times, it was the
of wisdom, it was the
the age of wisdom, it
the best of times, it
the worst of times, it
times, it was the age
times, it was the worst
was the age of wisdom,
was the age of foolishness,
was the best of times,
was the worst of times,
wisdom, it was the age
worst of times, it was

```
It was the best of
was the best of times,
the best of times, it
best of times, it was
of times, it was the
of times, it was the
times, it was the worst
times, it was the age
```

The repeated sequence make the correct reconstruction ambiguous

- It was the best of times, it was the [worst/age]
[Any ideas on how to proceed?]

de Bruijn Graph Construction

- $D_{k}=(V, E)$
- $\mathrm{V}=$ All length- k subfragments ($\mathrm{k}<\mathrm{I}$)
- $\mathrm{E}=$ Directed edges between consecutive subfragments
- Nodes overlap by k-I words

Original Fragment

It was the best of

Directed Edge

- Locally constructed graph reveals the global sequence structure
- Overlaps between sequences implicitly computed
de Bruijn, 1946
Idury and Waterman, 1995
Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

de Bruijn Graph Assembly

Counting Eulerian Tours

$$
\begin{aligned}
& \text { ARBRCRD } \\
& \text { or } \\
& \text { ARCRBRD }
\end{aligned}
$$

Generally an exponential number of compatible sequences

- Value computed by application of the BEST theorem (Hutchinson, 1975)

$$
\begin{aligned}
& \mathcal{W}(G, t)=(\operatorname{det} L)\left\{\prod_{u \in V}\left(r_{u}-1\right)!\right\}\left\{\prod_{(u, v) \in E} a_{u v}!\right\}^{-1} \\
& \mathrm{~L}=n \times n \text { matrix with } r_{u}-a_{u u} \text { along the diagonal and }-a_{u v} \text { in entry uv } \\
& r_{u}=d^{+}(u)+l \text { if } u=t, \text { or } d^{+}(u) \text { otherwise } \\
& a_{u v}=\text { multiplicity of edge from } u \text { to } v
\end{aligned}
$$

Assembly Complexity of Prokaryotic Genomes using Short Reads. Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.

Milestones in Genome Assembly

articles
Nucleotide sequence of bacteriophage Ф X174 DNA

1977. Sanger et al. $1{ }^{\text {st }}$ Complete Organism 5375 bp

2000. Myers et al.
$\|^{\text {st }}$ Large WGS Assembly.
Celera Assembler. I 16 Mbp

1995. Fleischmann et al.
$\|^{\text {st }}$ Free Living Organism TIGR Assembler. I.8Mbp

200 I.Venter et al., IHGSC Human Genome
Celera Assembler/GigaAssembler. 2.9 Gbp

1998. C.elegans SC ${ }^{\text {st }}$ Multicellular Organism BAC-by-BAC Phrap. 97Mbp

2010. Li et al.
${ }^{\text {st }}$ Large SGS Assembly.
SOAPdenovo 2.2 Gbp

Like Dickens, we must computationally reconstruct a genome from short fragments

Current Applications

- Novel genomes

- Metagenomes

- Sequencing assays
- Structural variations
- Transcript assembly

Assembling a Genome

I. Shear \& Sequence DNA

2. Construct assembly graph from overlapping reads
3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links

Illumina Sequencing by Synthesis

1. Prepare
2. Attach

3. Amplify

4. Image

5. Basecall

Metzker (2010) Nature Reviews Genetics I I:3I-46

Paired-end and Mate-pairs

Paired-end sequencing

- Read one end of the molecule, flip, and read the other end
- Generate pair of reads separated by up to 500bp with inward orientation 300bp

Mate-pair sequencing

- Circularize long molecules (I-IOkbp), shear into fragments, \& sequence
- Mate failures create short paired-end reads

10kbp

Typical genome coverage

Imagine raindrops on a sidewalk

Coverage and Read Length

Idealized Lander-Waterman model

- Reads start at perfectly random positions
- Poisson distribution in coverage
- Contigs end when there are no overlapping reads
- Contig length is a function of coverage and read length
- Effective coverage reduced by oll
- Short reads require much higher coverage to reach same expected contig length

Lander Waterman Expected Contig Length vs Coverage

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1 I65-I I73.

Repeats and Read Length

- Explore the relationship between read length and contig N50 size
- Idealized assembly of read lengths: 25, 35, 50, I00, 250, 500, 1000
- Contig/Read length relationship depends on specific repeat composition

Assembly Complexity of Prokaryotic Genomes using Short Reads. Kingsford C, Schatz MC, Pop M (20I0) BMC Bioinformatics. II:2I.

Short Read Assembly

- Genome assembly as finding an Eulerian tour of the de Bruijn graph
- Human genome: >3B nodes, > IOB edges
- The new short read assemblers require tremendous computation
- Velvet (Zerbino \& Birney, 2008) serial: > 2TB of RAM
- ABySS (Simpson et al., 2009) MPI: I68 cores x ~96 hours
- SOAPdenovo (Li et al., 20I0) pthreads: 40 cores $\times 40$ hours, > 140 GB RAM

Error Correction with Quake

I. Count all "Q-mers" in reads

- Fit coverage distribution to mixture model of errors and regular coverage
- Automatically determines threshold for trusted k-mers

2. Correction Algorithm

- Considers editing erroneous kmers into trusted kmers in decreasing likelihood
- Includes quality values, nucleotide/nucleotide substitution rate

Quake: quality-aware detection and correction of sequencing reads. Kelley, DR, Schatz, MC, Salzberg SL (2010) Genome Biology. I I:RII6

Graph Compression

- After construction, many edges are unambiguous
- Merge together compressible nodes
- Error correction reduces number of nodes, number of false edges, and allows for longer word size

Node Types

Isolated nodes (10\%)

Tips (46\%)

Bubbles/Non-branch (9\%)

Dead Ends (.2\%)

Half Branch (25\%)

Full Branch (10\%)

Graph Correction

- Errors at end of read
- Trim off ‘dead-end’ tips

- Errors in middle of read
- Pop Bubbles

- Chimeric Edges
- Clip short, low coverage nodes

Coverage Evaluation

- If n reads are a uniform random sample of the genome of length G, we expect $k=n \Delta / G$ reads to start in a region of length Δ.
- If we see many more reads than k (if the arrival rate is $>A$), it is likely to be a collapsed repeat
- Requires an accurate genome size estimate

$$
A(\Delta, k)=\ln \left(\frac{\operatorname{Pr}(1-\text { copy })}{\operatorname{Pr}(2-\text { copy })}\right)=\ln \left(\frac{\frac{(\Delta n / G)^{k}}{k!} e^{\frac{-\Delta n}{G}}}{\frac{(2 \Delta n / G)^{k}}{k!} e^{\frac{-2 \Delta n}{G}}}\right)=\frac{n \Delta}{G}-k \ln 2
$$

Initial Scaffolding

Scaffold

Create an initial scaffold of basic contigs ("unitigs") whose coverage indicates they are not repetitive (A-stat > 5).

Repeat Resolution

Scaffold

Then add in remaining repetitive contigs based on their mate relationships allowing repetitive sequences to be placed multiple times.

N50 size

Def: 50% of the genome is in contigs larger than N50

Example:
I Mbp genome
Contigs: 300k, I00k, 50k, 45k, 30k, 20k, I5k, I5k, I0k,
N50 size $=30 \mathrm{kbp}$
$(300 k+100 k+50 k+45 k+30 k=525 k>=500 k b p)$
Note:
N50 values are only meaningful to compare when base genome size is the same in all cases

Illumina Sequencing \& Assembly

Quake Results
2x76bp @ 275bp
2x36bp @ 3400bp

Validated	$51,243,281$	88.5%
Corrected	$2,763,380$	4.8%
Trim Only	$3,273,428$	5.6%
Removed	606,251	1.0%

SOAPdenovo Results

	$\# \geq 100 \mathrm{bp}$	N50 (bp)
Scaffolds	2,340	253,186
Contigs	2,782	56,374
Unitigs	$4,15 \mathrm{I}$	20,772

Assembly realities

- Contigs are never as large as predicted
- High coverage is a necessary but not sufficient condition
- Error correction is required for good assembly
- Sequencing is basically random, but sequence composition is not
- Repeats control the quality of the assembly
- Assemblers break contigs at ambiguous repeats
- Highly repetitive genomes will be highly fragmented
- Assemblers make mistakes
- Mis-assemblies confuse all downstream analysis
- Tension between overlap error rate and repeat resolution

Assembly Evaluation

Assembly Evaluation

Mis-assembly Types

Basic mis-assemblies can be combined into more complicated patterns: Insertions, Deletions, Giant Hairballs

Assembly Forensics

Automatically scan an assembly to locate misassembly signatures for further analysis and correction

Assembly-validation pipeline
I. Evaluate Mate Pairs \& Libraries
2. Evaluate Read Alignments
3. Evaluate Read Breakpoints
4. Analyze Depth of Coverage

Genome Assembly forensics: finding the elusive mis-assembly. Phillippy,AM, Schatz, MC, Pop, M. (2008) Genome Biology 9:R55.

Mate-Happiness: asmQC

- Excision: Skip reads between flanking repeats
- Truth

- Misassembly: Compressed Mates, Missing Mates

Mate-Happiness: asmQC

- Insertion: Additional reads between flanking repeats
- Truth

- Misassembly: Expanded Mates, Missing Mates

Mate-Happiness: asmQC

- Rearrangement: Reordering of reads
- Truth

- Misassembly: Misoriented Mates

Note: Unhappy mates may also occur for biological or technical reasons.

Sampling the Genome

CE Statistic: Expansion

8 inserts: $3.2 \mathrm{~kb}-6 \mathrm{~kb}$
Local Mean: 4461
C/E Stat: $(4461-4000)=+3.26$
($400 / \sqrt{ } 8$)
C/E Stat ≥ 3.0 indicates Expansion

CE Statistic: Compression

8 inserts: 3.2 kb-4.8kb
Local Mean: 3488
C/E Stat: (3488-4000) $=-3.62$
(400 / V 8)
C/E Stat ≤-3.0 indicates Compression

Read Alignment

- Multiple reads with same conflicting base are unlikely
- Ix QV 30: I/I000 base calling error
- $2 \times$ QV 30 : $1 / 1,000,000$ base calling error
- 3x QV 30: I/I,000,000,000 base calling error
- Regions of correlated SNPs are likely to be assembly errors or interesting biological events
- Highly specific metric
- AMOS Tools: analyzeSNPs \& clusterSNPs
- Locate regions with high rate of correlated SNPs
- Parameterized thresholds:
- Multiple positions within I00bp sliding window
- 2+ conflicting reads
- Cumulative QV >= 40 (I/I0000 base calling error)

Collapsed Repeat

 Schatz, MC, Phillippy, AM, Shneiderman, B, Salzberg, SL. (2007) Genome Biology 8:R34.

Validation Accuracy

Table 1									
					yene			reyora	
Hencee	Len	4\%	Evor	Nus	veat	Sera	men	wea-	Sien
2. muvar	37	4	3	5334	1	10099	\$2\%	2	100.8
120nt	24	123	15	L,Ser	31	as	sit	*	meat
C burase	24	55	32	1.35	7	1093	124	13	190.1
Caxue	1.4	. 39	13	*st	15	*23	10	8	46.3
C.man	1.1	53	5	200	11	000	31	3	60.1
A eflevepes	48	832	12	58	22	\%1.7	e	3	100.1
fimunoperas	48	ass	38	4,0\%	22	*13	200	14	
L. monogtopener	2.3)	172	1	1,301	5	10000	201	1	100.11
M aproidr	14	17	3	53	8	*3	18	4	38
4. mevorsa	as	85	4	* 4	e	ns	12	a.	ne
A nimesela	2.	343	21	1.65s	53	10000	201	25	100.11
P- \%ermper	6.4	394	84	2.261	200	18.4	M ${ }^{401}$	55	38.4
it matione	2.	487	23	6er	43	H2\%	12	38	ans
5 mant	20	824	41	L.436	**	275	229	18	381
W. nowts	33	3 Na	31	\$1	89	100. ${ }^{\text {c }}$	188	33	100.1
1-4nam	5.8	st	48	2,542	Ite	sobel	Hate	63	160.a
Tuas	$4 * .4$	3432	413		1 ${ }_{\text {風 }}$	48	2. 2×1	173	32.4

Species hame y

Assembly Summary

Assembly quality depends on
I. Coverage: low coverage is mathematically hopeless
2. Repeat composition: high repeat content is challenging
3. Read length: longer reads help resolve repeats
4. Error rate: errors reduce coverage, obscure true overlaps

- Assembly is a hierarchical, starting from individual reads, build high confidence contigs/unitigs, incorporate the mates to build scaffolds
- Extensive error correction is the key to getting the best assembly possible from a given data set
- Watch out for collapsed repeats \& other misassemblies
- Globally/Locally reassemble data from scratch with better parameters \& stitch the 2 assemblies together

Break

Outline

Part I:Schatz Lab Overview
 Part 2: Sequence Alignment
 Part 3: Genome Assembly

Part 4: Parallel \& Cloud Computing

- Milestones in DNA Sequencing
- Hadoop \& Cloud Computing
- Sequence Analysis in the Clouds

Milestones in DNA Sequencing

http://en.wikipedia.org/wiki/File:Sequencing.jpg http://www.answers.com/topic/automated-sequencer

Milestones in DNA Sequencing

1987
Applied Biosystems markets the ABI 370 as the first automated sequencing machine
http://commons.wikimedia.org/wiki/File:370A_automated_DNA_sequencer.jpg

Fluorescent Dye Termination 350bp / lane x 16 lanes = 5600bp / day / machine

Milestones in DNA Sequencing

1995
Fleischmann et al. $\|^{\text {st }}$ Free Living Organism TIGR Assembler. I.8Mbp

2000
Myers et al.
${ }^{\text {It }}$ Large WGS Assembly. Celera Assembler. I 16 Mbp

2001
Venter et al., Human Genome Celera Assembler. 2.9 Gbp

ABI 3700: 500 bp reads $\times 768$ samples / day $=384,000 \mathrm{bp} /$ day.
"The machine was so revolutionary that it could decode in a single day the same amount of genetic material that most DNA labs could produce in a year. " J. Craig Venter

Milestones in DNA Sequencing

2004
454/Roche
Pyrosequencing
Current Specs (Titanium):
IM 400bp reads / run =
lGbp / day

2007
Illumina
Sequencing by Synthesis
Current Specs (HiSeq 2000):
2.5 B 100bp reads / run $=$ 60Gbp / day

2008
ABI / Life Technologies SOLiD Sequencing Current Specs (5500xl): 5B 75bp reads / run = 30Gbp / day

Second Generation Sequencing Applications

Phylogeny \& Evolution

Sequencing Centers

Next Generation Genomics:World Map of High-throughput Sequencers
http://pathogenomics.bham.ac.uk/hts/

DNA Data Tsunami

Current world-wide sequencing capacity exceeds I3Pbp/year and is growing at $5 x$ per year!

"Will Computers Crash Genomics?"
Elizabeth Pennisi (201I) Science. 33 I(6018): 666-668.

Genomics and Parallel Computing

Current world-wide sequencing capacity exceeds $13 \mathrm{Pbp} /$ year and is growing at $5 x$ per year!

Our best (only) hope is to use many computers:

- Parallel Computing aka Cloud Computing
- Now your programs will crash on 1000 computers instead of just I ©

Amazon Web Services

http://aws.amazon.com

- All you need is a credit card, and you can immediately start using one of the largest datacenters in the world
- Elastic Compute Cloud (EC2)
- On demand computing power
- Support for Windows, Linux, \& OpenSolaris
- Starting at $2.0 \notin /$ core / hour
- Simple Storage Service (S3)
- Scalable data storage
- I5申 / GB monthly fee
- Plus many others

EC2 Architecture

- Very large pool of machines
- Effectively infinite resources
- High-end servers with many cores and many GB RAM
- Machines run in a virtualized environment
- Amazon can subdivide large nodes into smaller instances
- You are 100\% protected from other users on the machine
- You get to pick the operating system, all installed software

Amazon Machine Images

- A few Amazon sponsored images
- Suse Linux,Windows
- Many Community Images \& Appliances
- CloudBioLinux: Genomics Appliance
- Crossbow: Hadoop, Bowtie, SOAPsnp
- Galaxy: CloudMan
- Build you own
- Completely customize your environment
- You results could be totally reproducible

Getting Started

http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/

Hadoop MapReduce

http://hadoop.apache.org

- MapReduce is Google's framework for large data computations
- Data and computations are spread over thousands of computers
- Indexing the Internet, PageRank, Machine Learning, etc... (Dean and Ghemawat, 2004)
- 946 PB processed in May 2010 (Jeff Dean at Stanford, II.I0.20I0)
- Hadoop is the leading open source implementation
- Developed and used by Yahoo, Facebook, Twitter, Amazon, etc
- GATK is an alternative implementation specifically for NGS
- Benefits
- Scalable, Efficient, Reliable
- Easy to Program
- Runs on commodity computers
- Challenges
- Redesigning / Retooling applications
- Not Condor, Not MPI
- Everything in MapReduce

Hadoop for NGS Analysis

CloudBurst

Highly Sensitive Short Read Mapping with MapReduce

100x speedup mapping on 96 cores @ Amazon
http://cloudburst-bio.sf.net
(Schatz, 2009)

Myrna

Cloud-scale differential gene expression for RNA-seq

Expression of I.I billion RNA-Seq reads in ~ 2 hours for $\sim \$ 66$

(Langmead,
Hansen, Leek, 2010)
http://bowtie-bio.sf.net/myrna/

Quake

Quality-aware error correction of short reads

Correct 97.9% of errors with 99.9% accuracy

Genome Indexing
 \$GATTACA

 A\$GATTACRapid Parallel Construction ACA\$GATT of Genome Index

Construct the BWT of the human genome in 9 minutes
(Menon,
Bhat, Schatz, 201I*)

System Architecture

- Hadoop Distributed File System (HDFS)
- Data files partitioned into large chunks (64MB), replicated on multiple nodes
- Computation moves to the data, rack-aware scheduling
- Hadoop MapReduce system won the 2009 GreySort Challenge
- Sorted I00 TB in 173 min ($578 \mathrm{~GB} / \mathrm{min}$) using 3452 nodes and 4×3452 disks
- Provides many disks in addition to many cores

Hadoop on AWS

If you don't have 1000s of machines, rent them from Amazon

- After machines spool up, ssh to master as if it was a local machine.
- Use S3 for persistent data storage, with very fast interconnect to EC2.

Parallel Algorithm Spectrum

Embarrassingly Parallel

Map-only
Each item is Independent

Tightly Coupled

Iterative MapReduce Constant Sync

I. Embarrassingly Parallel

- Batch computing
- Each item is independent
- Split input into many chunks
- Process each chunk separately on a different computer
- Challenges
- Distributing work, load balancing, monitoring \& restart
- Technologies
- Condor, Sun Grid Engine

- Amazon Simple Queue

Elementary School Dance

2. Loosely Coupled

- Divide and conquer
- Independently process many items
- Group partial results
- Scan partial results into final answer
- Challenges
- Batch computing challenges
- + Shuffling of huge datasets

- Technologies
- Hadoop, Elastic MapReduce, Dryad
- Parallel Databases

Junior High Dance

Short Read Mapping

- Given a reference and many subject reads, report one or more "good" end-toend alignments per alignable read
- Find where the read most likely originated
- Fundamental computation for many assays
- Genotyping
RNA-Seq
Methyl-Seq
- Structural Variations

Chip-Seq
$\mathrm{Hi}-\mathrm{C}-\mathrm{Seq}$

- Desperate need for scalable solutions
- Single human requires >I,000 CPU hours / genome

Crossbow

http://bowtie-bio.sourceforge.net/crossbow

- Align billions of reads and find SNPs
- Reuse software components: Hadoop Streaming
- Map: Bowtie (Langmead et al., 2009)
- Find best alignment for each read
- Emit (chromosome region, alignment)
- Shuffle: Hadoop
- Group and sort alignments by region
- Reduce: SOAPsnp (Li et al., 2009)
- Scan alignments for divergent columns
- Accounts for sequencing error, known SNPs

Performance in Amazon EC2

http://bowtie-bio.sourceforge.net/crossbow

	Asian Individual Genome		
Data Loading	3.3 B reads	I06.5 GB	$\$ 10.65$
Data Transfer	$\mathrm{Ih}: 15 \mathrm{~m}$	40 cores	$\$ 3.40$
Setup	$0 \mathrm{~h}: 15 \mathrm{~m}$	320 cores	$\$ 13.94$
Alignment	$\mathrm{Ih}: 30 \mathrm{~m}$	320 cores	$\$ 41.82$
Variant Calling	$\mathrm{Ih}: 00 \mathrm{~m}$	320 cores	$\$ 27.88$
End-to-end	$4 \mathrm{~h}: 00 \mathrm{~m}$		$\$ 97.69$

Discovered 3.7M SNPs in one human genome for $\sim \$ 100$ in an afternoon. Accuracy validated at $\mathbf{> 9 9 \%}$

Searching for SNPs with Cloud Computing.
Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology. I O:RI34

Map-Shuffle-Scan for Genomics

Cloud Computing and the DNA Data Race.
Schatz, MC, Langmead B, Salzberg SL (20I0) Nature Biotechnology. 28:69I-693

Jnomics Structural Variations

Circos plot of high confidence SVs specific to esophageal cancer sample

- Red: SVs specific to tumor
- Green: SVs in both diseased and tumor samples

Detailed analysis of disrupted genes and fusion genes in progress

- Preliminary analysis shows many promising hits to known cancer genes

3.Tightly Coupled

- Computation that cannot be partitioned
- Graph Analysis
- Molecular Dynamics
- Population simulations
- Challenges
- Loosely coupled challenges
- + Parallel algorithms design
- Technologies
- MPI
- MapReduce, Dryad, Pregel

High School Dance

Short Read Assembly

- Genome assembly as finding an Eulerian tour of the de Bruijn graph
- Human genome: >3B nodes, > IOB edges
- The new short read assemblers require tremendous computation
- Velvet (Zerbino \& Birney, 2008) serial: > 2TB of RAM
- ABySS (Simpson et al., 2009) MPI: I68 cores x ~96 hours
- SOAPdenovo (Li et al., 20I0) pthreads: 40 cores $\times 40$ hours, > 140 GB RAM

Warmup Exercise

Who here was born closest to Oct 3?

- You can only compare to I other person at a time

Find winner among 16 teams in just 4 rounds

Fast Path Compression

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign (H)/T to each compressible node
- Compress $(\mathbb{H} \rightarrow T$ links

Initial Graph: 42 nodes

Randomized Speed-ups in Parallel Computation.
Vishkin U. (I984) ACM Symposium on Theory of Computation. 230-239.

Fast Path Compression

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign $(\mathbb{H}) / T$ to each compressible node
- Compress $(\mathbb{H} \rightarrow T$ links

Round 1: 26 nodes (38\% savings)

Randomized Speed-ups in Parallel Computation.
Vishkin U. (I984) ACM Symposium on Theory of Computation. 230-239.

Fast Path Compression

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign $(\mathbb{H}) / T$ to each compressible node
- Compress $(\mathbb{H} \rightarrow T$ links

Round 2: 15 nodes (64\% savings)

Randomized Speed-ups in Parallel Computation.
Vishkin U. (I984) ACM Symposium on Theory of Computation. 230-239.

Fast Path Compression

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign $(\mathbb{H} / \mathrm{T}$ to each compressible node
- Compress $(\mathbb{H} \rightarrow T$ links

Round 2: 8 nodes (81\% savings)

Randomized Speed-ups in Parallel Computation.
Vishkin U. (I984) ACM Symposium on Theory of Computation. 230-239.

Fast Path Compression

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign $(\mathbb{H} / \mathrm{T}$ to each compressible node
- Compress $(\mathbb{H} \rightarrow T$ links

Round 3: 6 nodes (86\% savings)

Randomized Speed-ups in Parallel Computation.
Vishkin U. (I984) ACM Symposium on Theory of Computation. 230-239.

Fast Path Compression

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign $(\mathbb{H}) / T$ to each compressible node
- Compress $(H) \rightarrow T$ links

Performance

- Compress all chains in $\log (\mathrm{S})$ rounds

Round 4: 5 nodes (88\% savings)

Randomized Speed-ups in Parallel Computation.
Vishkin U. (I984) ACM Symposium on Theory of Computation. 230-239.

Contrail

http://contrail-bio.sourceforge.net

De novo bacterial assembly

- Genome: E. coli KI2 MGI655, 4.6Mbp
- Input: 20.8M 36bp reads, 200bp insert (~150x coverage)
- Preprocessor: Quake Error Correction

Initial

N
Max
N50

Compressed

245,131
I,079 bp 156 bp

Error Correction

Resolve Repeats

Cloud Surfing

Assembly of Large Genomes with Cloud Computing. Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

Contrail

http://contrail-bio.sourceforge.net

De novo Assembly of the Human Genome

- Genome: African male NA 8507 (SRA00027I, Bentley et al., 2008)
- Input: 3.5B 36bp reads, 210 bp insert ($\sim 40 \mathrm{x}$ coverage)

Initial

N
Max
N50

Compressed

>1 B
303 bp
< 100 bp

Error Correction

Resolve Repeats

$$
\underbrace{\substack{0}}_{\substack{4.1 \mathrm{M} \\ 20,594 \mathrm{bp} \\ \mathrm{I}, 050 \mathrm{bp}}}
$$

Cloud Surfing

Assembly of Large Genomes with Cloud Computing. Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

De novo mutations and de Bruijn Graphs

Searching for de novo mutations in the families of 3000 autistic children.

- Assemble together reads from mom, dad, affected \& unaffected children
- Look for sequence paths unique to affected child

Summary

- We are entering the digital age of biology
- Next generation sequencing, microarrays, mass spectrometry, microscopy, ecology, etc
- Parallel computing may be our only hope for keeping up with the pace of advance
- Modern biology requires (is) quantitative biology
- Computational, mathematical, and statistical techniques applied to analyze, integrate, and interpret biological sensor data
- Don't let the data tsunami crash on you
- Study, practice, collaborate with quantitative techniques

Watson School of Biological Sciences

Since opening in 1999, the WSBS has become a leading PhD program in the biological sciences, one whose fresh approach is quickly being emulated by other programs across the country.

- An innovative Ph.D. program designed for exceptional students
- Approximately four years from matriculation to Ph.D. degree award
- A first year with course work and laboratory rotations in separate phases
- Emphasis on the principles of scientific reasoning and logic
- Learn more: http://www.cshl.edu/gradschool

Acknowledgements

Schatzlab
Mitch Bekritsky
Matt Titmus Hayan Lee James Gurtowski Anirudh Aithal Rohith Menon Goutham Bhat

CSHL
Dick McCombie
Melissa Kramer
Eric Antonio
Mike Wigler
Zach Lippman
Doreen Ware Ivan Iossifov

JHU
Steven Salzberg
Ben Langmead Jeff Leek

NBACC
Adam Phillipy
Sergey Koren

Univ. of Maryland Mihai Pop
Art Delcher
Jimmy Lin David Kelley Dan Sommer Cole Trapnell

Thank You!

http://schatzlab.cshl.edu
@mike_schatz

