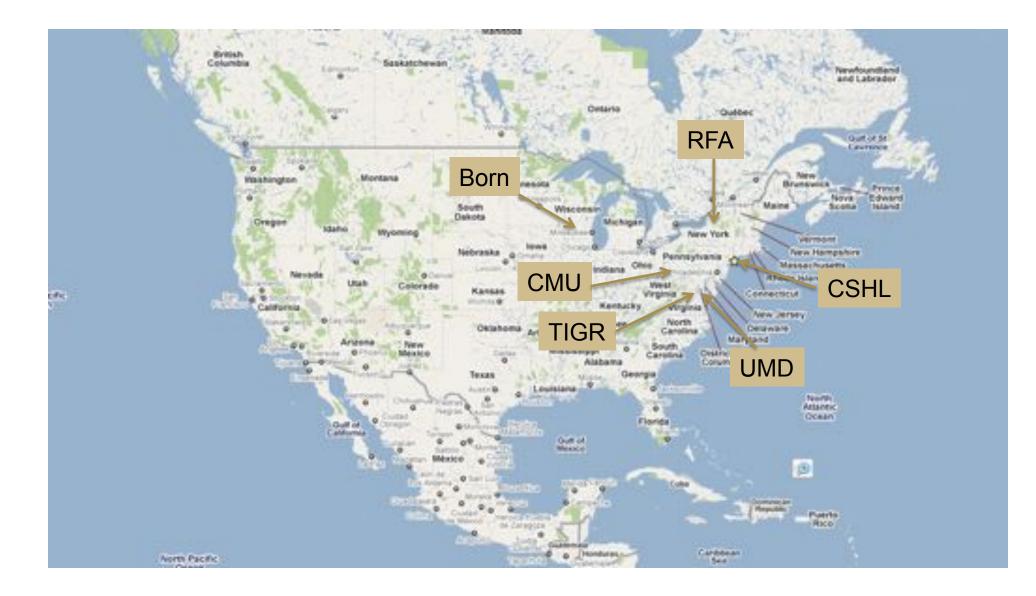
Computational Genomics Michael Schatz

Oct 3, 2011 Frontiers in Genomics

Outline


Part I: Schatz Lab Overview

Part 2: Sequence Alignment

Part 3: Genome Assembly

Part 4: Parallel & Cloud Computing

A Little About Me

Computational Biology

"Computer science is no more about computers than astronomy is about telescopes." Edger Dijkstra

Computer Science = Science of Computation

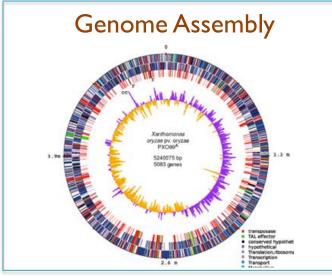
- Compute solutions to problems, designing & building systems
- Computers are very, very dumb, but we can instruct them
 - Build complex systems out of simple components

Computational Biology = Thinking Computationally about Biology

- Analysis: Make more powerful instruments, analyze results
- Design: experimental protocols, procedures, systems

Computational Genomics

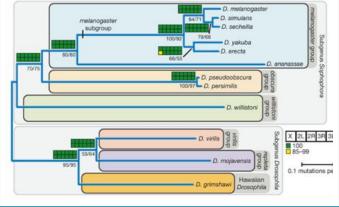
- I. Alignment
- 2. Assembly
- 3. Expression
- 4. Comparative Genomics


Computational Thinking

- I. Algorithm
- 2. Data structure
- 3. Computational Analysis
- 4. Computational Modeling

Μ	uta	atio	ns	&	Di	seas	e
CAAC	CT	TT	D.C	013	CTAT	CCA	CCCAT
CARC	5.7	TT S	0.0	1.1	OTAT:	C C A	CCCAT
CAAC	0.1	TTO	0.0	11	CTAT.	C-C-A-	DOCAT
CAAC	0.1	TTA	6 - E	1.1	GTAT.	CO.A.	CCCAT
CAAC	0.1	TTO	00	6 T P	CTAT.	COAL	CCCAT
GAAG	OT.	TT	00	610	GTAT.	6 G A	CCCAT
CAAC	01	TT C	0.0	1.1	CTAT.	CCA.	CCCAT
CAAC .	0.5	1111	00	61.6	CTAT	CO.4	0-0 0 A T
CAACH	0.1	TT C	0.0	11	CTAT.	CCAN	CCCAT
CAAC	0.1	TT C	5 C	616	CTAT	CCA	CCCAT
CADC	CT	TT	C C	T is	C1图1	CCA	CCCAT
CARC	CT	TT	C C	T	CTET	CCA	CCCAT
CADC	CT	TT	CC	1.	CIDI	CCA	CCCAT
CADC	CT.	TTO	0.0	T	стшт	CCA	CCCAT
CADO	CT	TT	0.0	T	СТВТ	CCA	CCCAT
CADC	CT	TT	c c	T	CTET	CCA	CCCAT
CADC	CT	TT	00	T	CTET	CCA	CCCAT
CADC	CT	TT	сc	T	CTET	CCA	CCCAT
CABC	CT	TTO	C C	T	CIMI	CCA	CCCAT

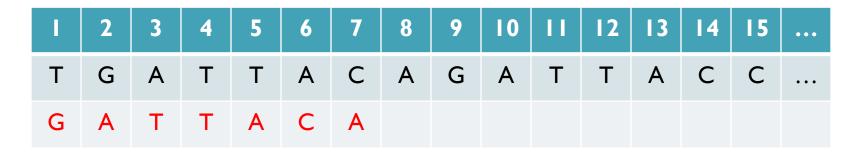




Differential Analysis

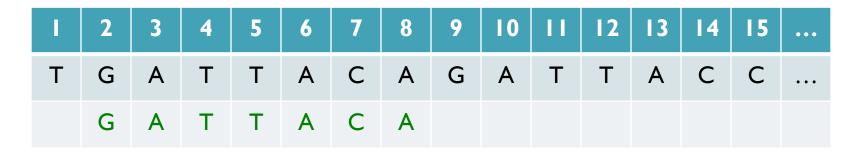
Phylogeny & Evolution

Outline

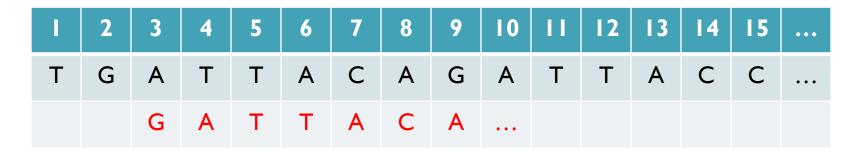

Part I: Schatz Lab Overview

Part 2: Sequence Alignment

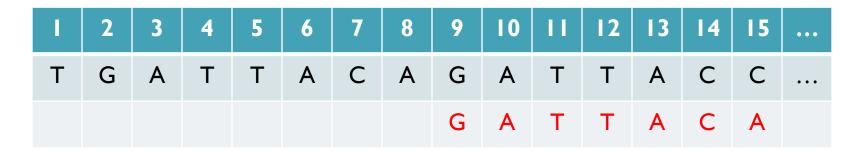
- Exact Matching
- Suffix Arrays
- Bowtie and the BWT


Part 3: Genome Assembly Part 4: Parallel & Cloud Computing

- Where is GATTACA in the human genome?
- Strategy I: Brute Force


No match at offset I

- Where is GATTACA in the human genome?
- Strategy I: Brute Force


Match at offset 2

- Where is GATTACA in the human genome?
- Strategy I: Brute Force

No match at offset 3...

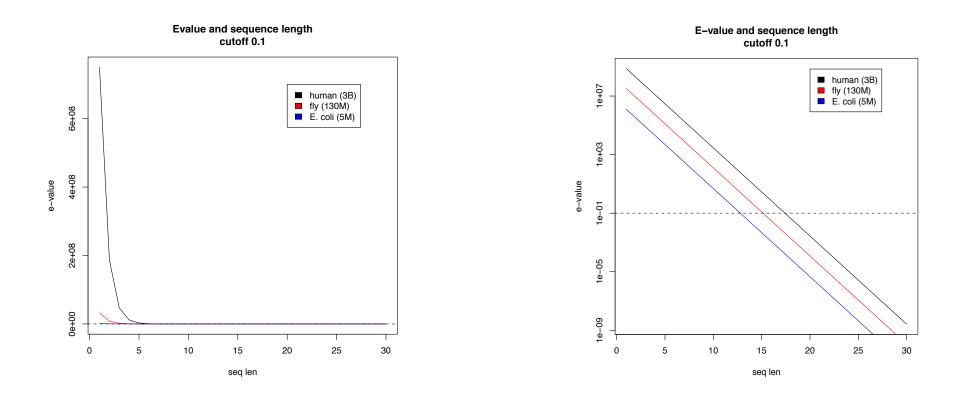
- Where is GATTACA in the human genome?
- Strategy I: Brute Force

No match at offset 9 <- Checking each possible position takes time

Brute Force Analysis

- Brute Force:
 - At every possible offset in the genome:
 - Do all of the characters of the query match?
- Analysis
 - Simple, easy to understand
 - Genome length = n
 - Query length = m
 - Comparisons: (n-m+1) * m
- Overall runtime: O(nm)

[How long would it take if we double the genome size, read length?] [How long would it take if we double both?]


[3B] [7] [21B]

Expected Occurrences

The expected number of occurrences (e-value) of a given sequence in a genome depends on the length of the genome and inversely on the length of the sequence

- I in 4 bases are G, I in 16 positions are GA, I in 64 positions are GAT, ...
- I in 16,384 should be GATTACA
- $E=n/(4^{m})$

[183,105 expected occurrences] [How long do the reads need to be for a significant match?]

Brute Force Reflections

Why check every position?

- GATTACA can't possibly start at position 15

[WHY?]

- Improve runtime to O(n + m)

[3B + 7]

- If we double both, it just takes twice as long
- Knuth-Morris-Pratt, 1977
- Boyer-Moyer, 1977, 1991
- For one-off scans, this is the best we can do (optimal performance)
 - We have to read every character of the genome, and every character of the query
 - For short queries, runtime is dominated by the length of the genome

Suffix Arrays: Searching the Phone Book

- What if we need to check many queries?
 - We don't need to check every page of the phone book to find 'Schatz'
 - Sorting alphabetically lets us immediately skip 96% (25/26) of the book without any loss in accuracy
- Sorting the genome: Suffix Array (Manber & Myers, 1991)
 - Sort every suffix of the genome

Split into n suffixes Sort suffixes alphabetically

[Challenge Question: How else could we split the genome?]

- Strategy 2: Binary search
 - Compare to the middle, refine as higher or lower
- Searching for GATTACA
 - Lo = I; Hi = 15;

Lo	#	Sequence	Pos
->	-	ACAGATTACC	6
	2	ACC	13
	3	AGATTACC	8
	4	ATTACAGATTACC	3
	5	ATTACC	10
	6	C	15
	7	CAGATTACC	7
	8	CC	14
	9	GATTACAGATTACC	2
	10	GATTACC	9
	11	TACAGATTACC	5
	12	TACC	12
	13	TGATTACAGATTACC	I
	14	TTACAGATTACC	4
Hi	15	TTACC	11

- Strategy 2: Binary search ۲
 - Compare to the middle, refine as higher or lower
- Searching for GATTACA ٠
 - Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
 - Middle = Suffix[8] = CC

Lo	#	Sequence	Pos
-	I	ACAGATTACC	6
	2	ACC	13
	3	AGATTACC	8
	4	ATTACAGATTACC	3
	5	ATTACC	10
	6	C	15
	7	CAGATTACC	7
	8	CC	14
	9	GATTACAGATTACC	2
	10	GATTACC	9
	11	TACAGATTACC	5
	12	TACC	12
	13	TGATTACAGATTACC	I
	14	TTACAGATTACC	4
Hi	15	TTACC	11

- Strategy 2: Binary search ۲
 - Compare to the middle, refine as higher or lower
- Searching for GATTACA •
 - Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
 - Middle = Suffix[8] = CC => Higher: Lo = Mid + I

Lo	#	Sequence	Pos
-	I	ACAGATTACC	6
	2	ACC	13
	3	AGATTACC	8
	4	ATTACAGATTACC	3
	5	ATTACC	10
	6	C	15
	7	CAGATTACC	7
	8	CC	14
	9	GATTACAGATTACC	2
	10	GATTACC	9
	11	TACAGATTACC	5
	12	TACC	12
	13	TGATTACAGATTACC	I
	14	TTACAGATTACC	4
Hi	15	TTACC	11

- Strategy 2: Binary search
 - Compare to the middle, refine as higher or lower
- Searching for GATTACA
 - Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
 - Middle = Suffix[8] = CC
 => Higher: Lo = Mid + I
 - Lo = 9; Hi = 15;

	#	Sequence	Pos
	Ι	ACAGATTACC	6
	2	ACC	13
	З	AGATTACC	8
	4	ATTACAGATTACC	3
	5	ATTACC	10
	6	C	15
	7	CAGATTACC	7
Lo	8	CC	14
->	9	GATTACAGATTACC	2
	10	GATTACC	9
	11	TACAGATTACC	5
	12	TACC	12
	13	TGATTACAGATTACC	I
	14	TTACAGATTACC	4
Hi	15	TTACC	11

- Strategy 2: Binary search
 - Compare to the middle, refine as higher or lower
- Searching for GATTACA
 - Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
 - Middle = Suffix[8] = CC
 => Higher: Lo = Mid + I
 - Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
 - Middle = Suffix[12] = TACC

	#	Soguenco	Pos
	#	Sequence	
		ACAGATTACC	6
	2	ACC	13
	3	AGATTACC	8
	4	ATTACAGATTACC	3
	5	ATTACC	10
	6	C	15
	7	CAGATTACC	7
Lo	8	CC	14
\rightarrow	9	GATTACAGATTACC	2
	10	GATTACC	9
	11	TACAGATTACC	5
	12	TACC	12
	13	TGATTACAGATTACC	I
	14	TTACAGATTACC	4
Hi	15	TTACC	11

- Strategy 2: Binary search
 - Compare to the middle, refine as higher or lower
- Searching for GATTACA •
 - Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
 - Middle = Suffix[8] = CC = Higher: Lo = Mid + I
 - Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
 - Middle = Suffix[12] = TACC => Lower: Hi = Mid - I
 - Lo = 9; Hi = 11;

	#	Sequence	Pos
	Ι	ACAGATTACC	6
	2	ACC	13
	З	AGATTACC	8
	4	ATTACAGATTACC	3
	5	ATTACC	10
	6	C	15
	7	CAGATTACC	7
Lo	8	CC	14
-	9	GATTACAGATTACC	2
	10	GATTACC	9
Hi	11	TACAGATTACC	5
-	12	TACC	12
	13	TGATTACAGATTACC	I
	14	TTACAGATTACC	4
	15	TTACC	11

- Strategy 2: Binary search
 - Compare to the middle, refine as higher or lower
- Searching for GATTACA
 - Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
 - Middle = Suffix[8] = CC
 => Higher: Lo = Mid + I
 - Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
 - Middle = Suffix[12] = TACC
 => Lower: Hi = Mid 1
 - Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
 - Middle = Suffix[10] = GATTACC

	#	Sequence	Pos
	I	ACAGATTACC	6
	2	ACC	13
	3	AGATTACC	8
	4	ATTACAGATTACC	3
	5	ATTACC	10
	6	C	15
	7	CAGATTACC	7
Lo	8	CC	14
→,	9	GATTACAGATTACC	2
	10	GATTACC	9
Hi	11	TACAGATTACC	5
-	12	TACC	12
	13	TGATTACAGATTACC	I
	14	TTACAGATTACC	4
	15	TTACC	

- Strategy 2: Binary search
 - Compare to the middle, refine as higher or lower
- Searching for GATTACA
 - Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
 - Middle = Suffix[8] = CC
 => Higher: Lo = Mid + I
 - Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
 - Middle = Suffix[12] = TACC
 => Lower: Hi = Mid 1
 - Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
 - Middle = Suffix[10] = GATTACC
 => Lower: Hi = Mid I
 - Lo = 9; Hi = 9;

#	Sequence	Pos
Ι	ACAGATTACC	6
2	ACC	13
3	AGATTACC	8
4	ATTACAGATTACC	3
5	ATTACC	10
6	C	15
7	CAGATTACC	7
8	CC	14
9	GATTACAGATTACC	2
10	GATTACC	9
	TACAGATTACC	5
12	TACC	12
13	TGATTACAGATTACC	I
14	TTACAGATTACC	4
15	TTACC	

Lo

Hi

- Strategy 2: Binary search
 - Compare to the middle, refine as higher or lower
- Searching for GATTACA
 - Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
 - Middle = Suffix[8] = CC
 => Higher: Lo = Mid + I
 - Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
 - Middle = Suffix[12] = TACC
 => Lower: Hi = Mid 1
 - Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
 - Middle = Suffix[10] = GATTACC
 => Lower: Hi = Mid I
 - Lo = 9; Hi = 9; Mid = (9+9)/2 = 9
 - Middle = Suffix[9] = GATTACA...
 => Match at position 2!

	#	Sequence	Pos
	Ι	ACAGATTACC	6
	2	ACC	13
	3	AGATTACC	8
	4	ATTACAGATTACC	3
	5	ATTACC	10
	6	C	15
	7	CAGATTACC	7
Lo	8	СС	14
HÌ	9	GATTACAGATTACC	2
	10	GATTACC	9
	11	TACAGATTACC	5
	12	TACC	12
	13	TGATTACAGATTACC	I
	14	TTACAGATTACC	4
	15	TTACC	

Binary Search Analysis

Binary Search

Initialize search range to entire list mid = (hi+lo)/2; middle = suffix[mid] if query matches middle: done else if query < middle: pick low range else if query > middle: pick hi range Repeat until done or empty range

[WHEN?]

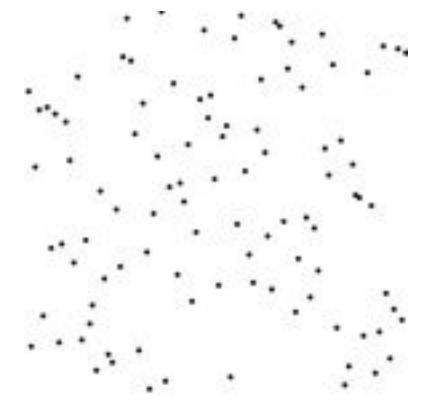
- Analysis
 - More complicated method
 - How many times do we repeat?
 - How many times can it cut the range in half?
 - Find smallest x such that: $n/(2^x) \le I$; $x = lg_2(n)$ [32]
- Total Runtime: O(m lg n)
 - More complicated, but much faster!
 - Looking up a query loops 32 times instead of 3B

[How long does it take to search 6B or 24B nucleotides?]

Suffix Array Construction

 How can we store the suffix array? [How many characters are in all suffixes combined?]

$$S = 1 + 2 + 3 + \dots + n = \sum_{i=1}^{n} i = \frac{n(n+1)}{2} = O(n^2)$$


- Hopeless to explicitly store 4.5 billion billion characters
- Instead use implicit representation
 - Keep I copy of the genome, and a list of sorted offsets
 - Storing 3 billion offsets fits on a server (12GB)
- Searching the array is very fast, but it takes time to construct
 - This time will be amortized over many, many searches
 - Run it once "overnight" and save it away for all future queries

Sorting

Quickly sort these numbers into ascending order: 14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

[How do you do it?]

6, 13, 14, 29, 31, 39, 64, 78, 50, 63, 61, 19 6, 13, 14, 29, 31, 39, 64, 78, 50, 63, 61, 19 6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61 6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61 6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61 6, 13, 14, 19, 29, 31, 39, 50, 64, 78, 63, 61 6, 13, 14, 19, 29, 31, 39, 50, 61, 64, 78, 63 6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78

http://en.wikipedia.org/wiki/Selection_sort

Selection Sort Analysis

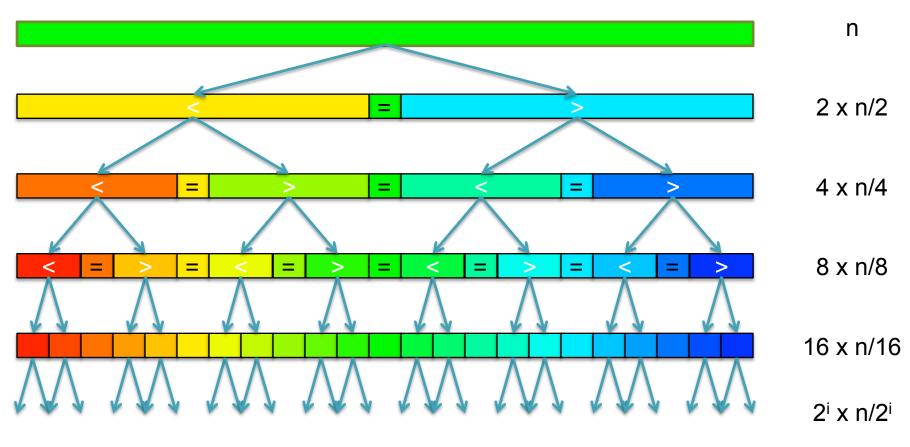
• Selection Sort (Input: list of n numbers)

```
for pos = I to n
    // find the smallest element in [pos, n]
    smallest = pos
    for check = pos+I to n
    if (list[check] < list[cmellect]); cmellect = d
</pre>
```

if (list[check] < list[smallest]): smallest = check</pre>

// move the smallest element to the front tmp = list[smallest] list[pos] = list[smallest] list[smallest] = tmp

• Complexity Analysis

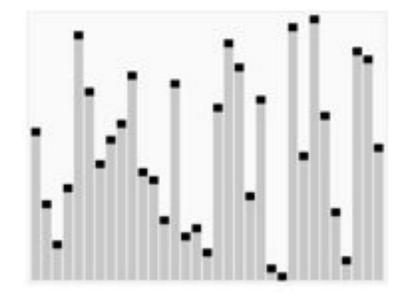

$$T = n + (n - 1) + (n - 2) + \dots + 3 + 2 + 1 = \sum_{i=1}^{n} i = \frac{n(n + 1)}{2} = O(n^2)$$

- Outer loop: pos = I to n
- Inner loop: check = pos to n
- Running time: Outer * Inner = $O(n^2)$ [4.5 Billion Billion]

[Challenge Questions: Why is this slow? / Can we sort any faster?]

Divide and Conquer

- Selection sort is slow because it rescans the entire list for each element
 - How can we split up the unsorted list into independent ranges?
 - Hint I: Binary search splits up the problem into 2 independent ranges (hi/lo)
 - Hint 2: Assume we know the median value of a list



[How many times can we split of n items a list in half?]

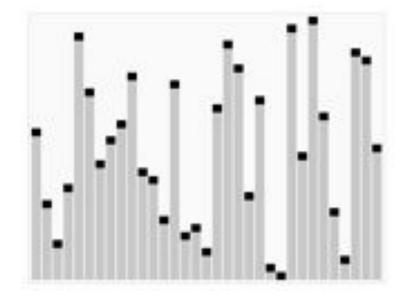
QuickSort Analysis

QuickSort(Input: list of n numbers)
 // see if we can quit
 if (length(list)) <= 1): return list

```
// split list into lo & hi
pivot = median(list)
lo = {}; hi = {};
for (i = I to length(list))
        if (list[i] < pivot): append(lo, list[i])
        else: append(hi, list[i])</pre>
```


http://en.wikipedia.org/wiki/Quicksort

// recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))


• Complexity Analysis (Assume we can find the median in O(n))

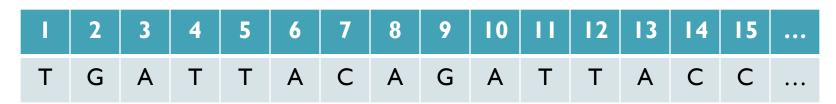
$$T(n) = \begin{cases} O(1) & \text{if } n \le 1\\ O(n) + 2T(n/2) & \text{else} \end{cases}$$

$$T(n) = n + 2(\frac{n}{2}) + 4(\frac{n}{4}) + \dots + n(\frac{n}{n}) = \sum_{i=0}^{lg(n)} \frac{2^{i}n}{2^{i}} = \sum_{i=0}^{lg(n)} n = O(n \lg n) \quad [\sim 94B]$$

QuickSort Analysis

QuickSort(Input: list of n numbers)
 // see if we can quit
 if (length(list)) <= 1): return list

```
// split list into lo & hi
pivot = median(list)
lo = {}; hi = {};
for (i = I to length(list))
        if (list[i] < pivot): append(lo, list[i])
        else: append(hi, list[i])</pre>
```



http://en.wikipedia.org/wiki/Quicksort

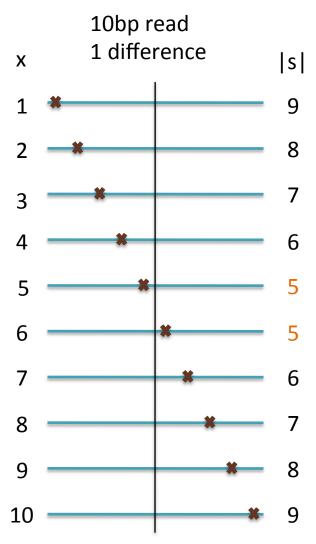
// recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))

• Complexity Analysis (Assume we can find the median in O(n))

$$T(n) = \begin{cases} O(1) & \text{if } n \le 1\\ O(n) + 2T(n/2) & \text{else} \end{cases}$$

$$T(n) = n + 2(\frac{n}{2}) + 4(\frac{n}{4}) + \dots + n(\frac{n}{n}) = \sum_{i=0}^{lg(n)} \frac{2^{i}n}{2^{i}} = \sum_{i=0}^{lg(n)} n = O(n \lg n) \quad [\text{~~94B}]$$

In-exact alignment

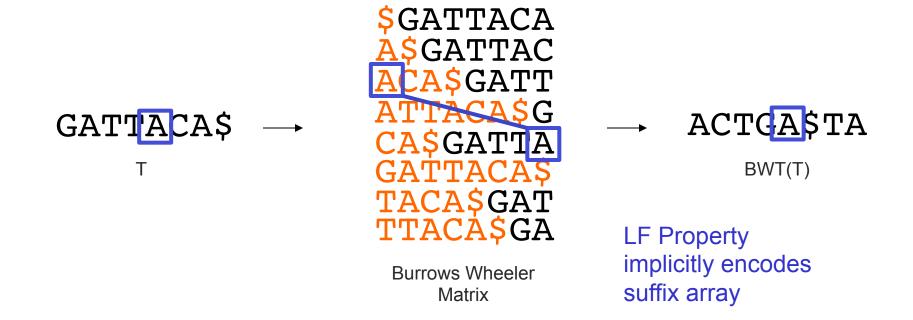

- Where is GATTACA *approximately* in the human genome?
 - And how do we efficiently find them?
- It depends...
 - Define 'approximately'
 - Hamming Distance, Edit distance, or Sequence Similarity
 - Ungapped vs Gapped vs Affine Gaps, Global vs Local
 - Algorithm depends on the data characteristics & goals
 - Smith-Waterman: Exhaustive search for optimal alignments
 - BLAST: Hash-table based homology searches
 - Bowtie: BWT alignment for short read mapping

Seed-and-Extend Alignment

Theorem: An alignment of a sequence of length mwith at most k differences **must** contain an exact match at least s=m/(k+1) bp long (Baeza-Yates and Perleberg, 1996)

- Proof: Pigeonhole principle
 - I pigeon can't fill 2 holes
- Seed-and-extend search
 - Use an index to rapidly find short exact alignments to seed longer in-exact alignments
 - BLAST, MUMmer, Bowtie, BWA, SOAP, ...

[How could you use seed-and-extend with a suffix array?]



Bowtie: Ultrafast and memory efficient alignment of short DNA sequences to the human genome

Slides Courtesy of Ben Langmead (langmead@umiacs.umd.edu)

Burrows-Wheeler Transform

- Suffix Array is fast to search, but much larger than genome
 - BWT is a reversible permutation of the genome based on the suffix array
 - Core index for Bowtie (Langmead *et al.*, 2009) and most recent short read mapping applications

Bowtie algorithm

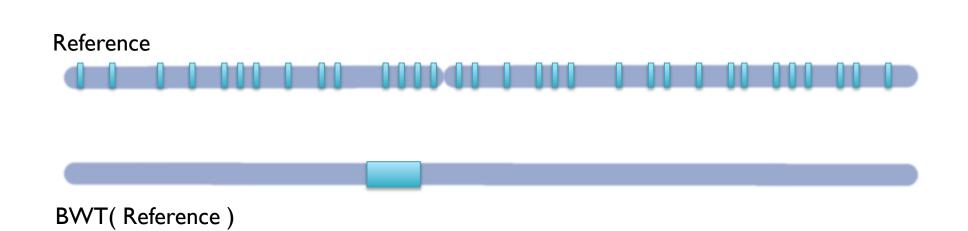
BWT(Reference)

Query: AATGATACGGCGACCACCGAGATCTA

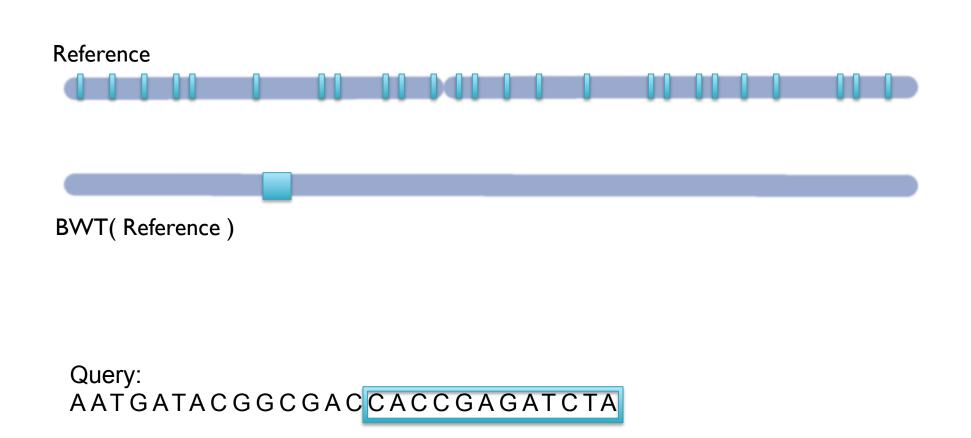
Bowtie algorithm

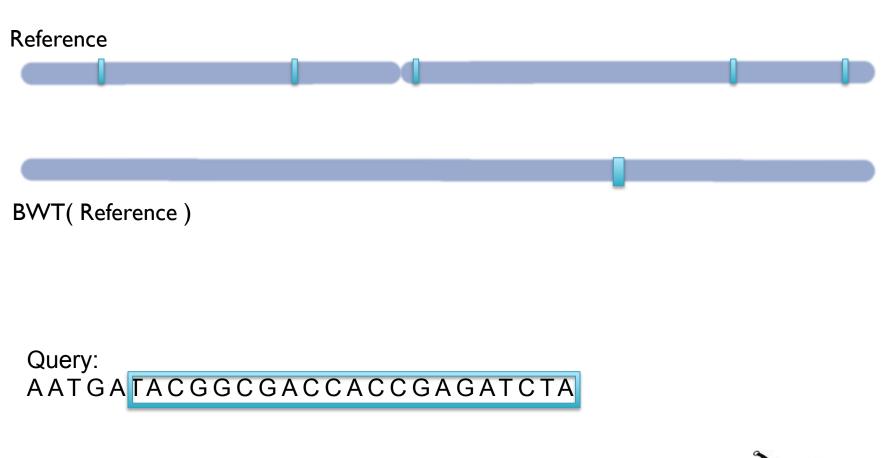
BWT(Reference)

Query: AATGATACGGCGACCACCGAGATCTA

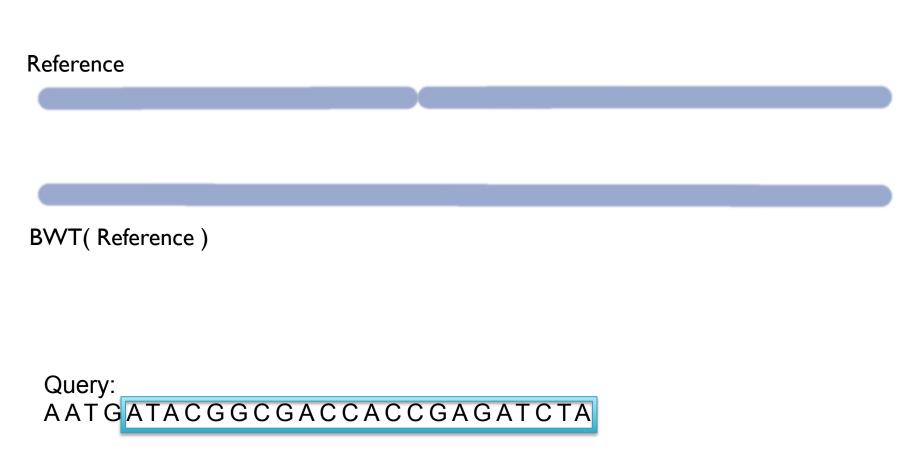


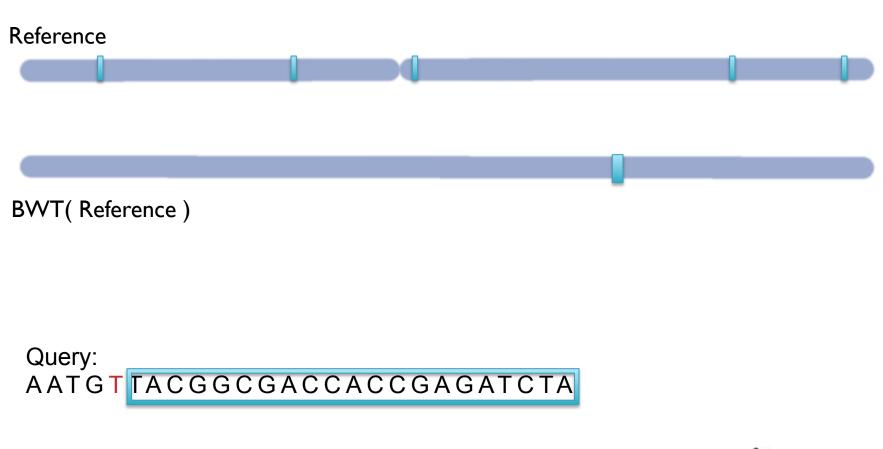
BWT(Reference)

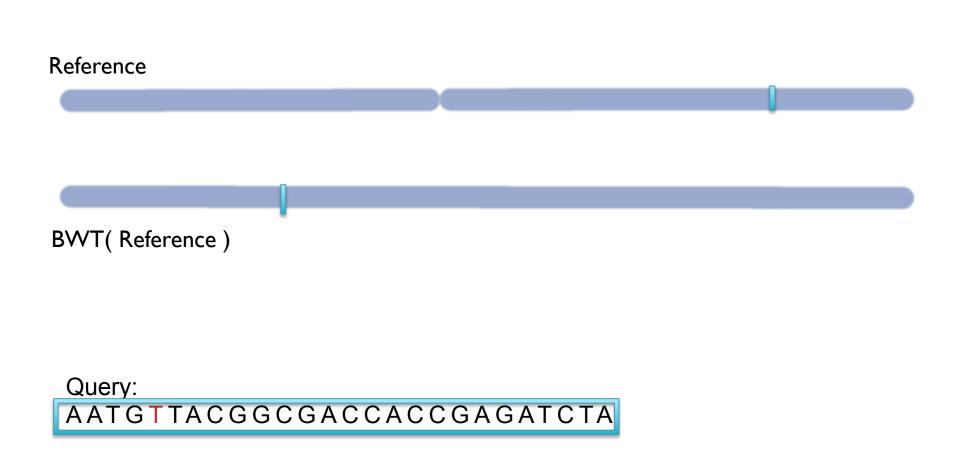

Query: AATGATACGGCGACCACCGAGATCTA



Query: AATGATACGGCGACCACCGAGATCTA







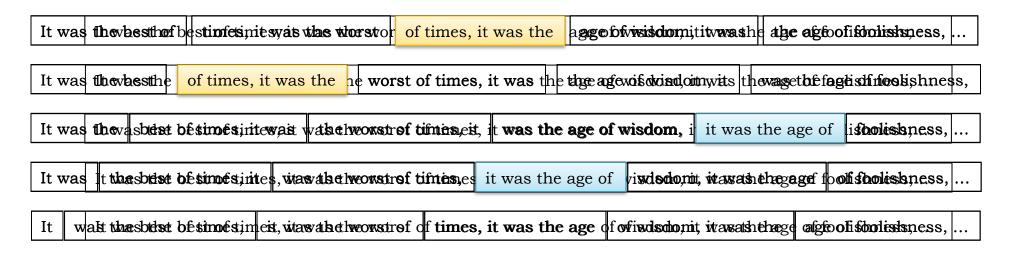
Part I: Summary

- Short Read Mapping: Seed-and-extend search of the BWT
 - If we fail to reach the end, back-track and resume search
 - The beginning of the read is used as high confidence seed
 - 100s of times faster than competing approaches, works entirely in RAM
- Algorithms choreograph the dance of data inside the machine
 - Algorithms add provable precision to your method
 - A smarter algorithm can solve the same problem with much less work
- Computational Techniques
 - Binary search: Fast lookup in any sorted list
 - **Divide-and-conquer**: Split a hard problem into an easier problem
 - **Recursion**: Solve a problem using a function of itself
 - Indexing: Focus on just the important parts
 - Seed-and-extend: Anchor the problem using a portion of it

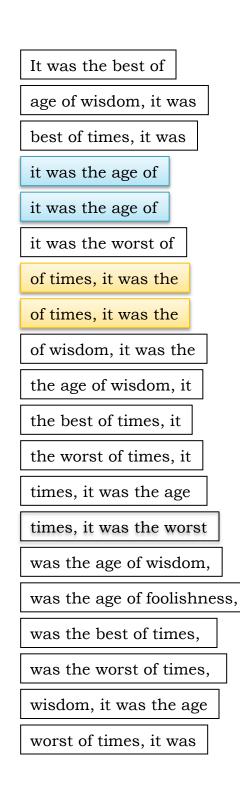
Break

Outline

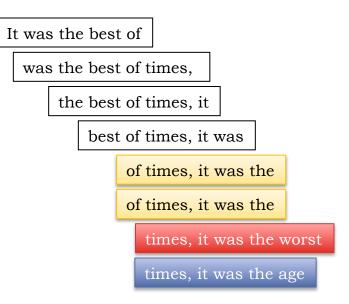
Part I: Schatz Lab Overview Part 2: Sequence Alignment


Part 3: Genome Assembly

- Assembly by analogy
- Coverage, read length, and repeats
- Contiging & Scaffolding
- Assembly Forensics

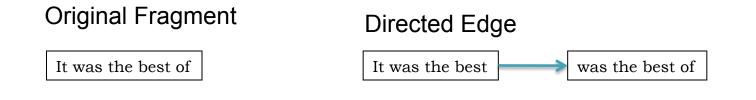

Part 4: Parallel & Cloud Computing

Shredded Book Reconstruction


Dickens accidentally shreds the first printing of <u>A Tale of Two Cities</u>
 – Text printed on 5 long spools

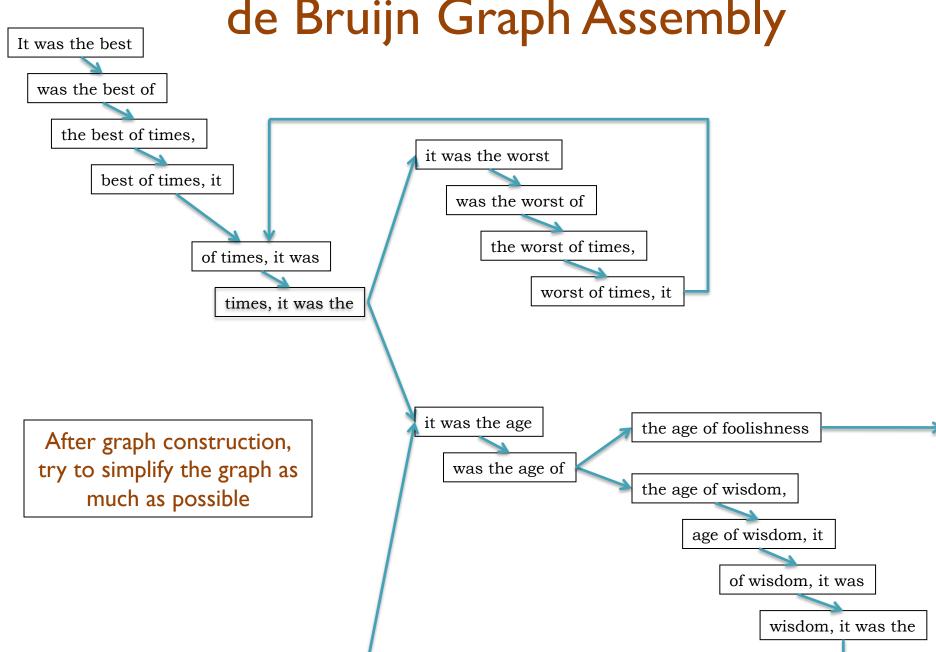
- How can he reconstruct the text?
 - 5 copies x 138, 656 words / 5 words per fragment = 138k fragments
 - The short fragments from every copy are mixed together
 - Some fragments are identical

Greedy Reconstruction

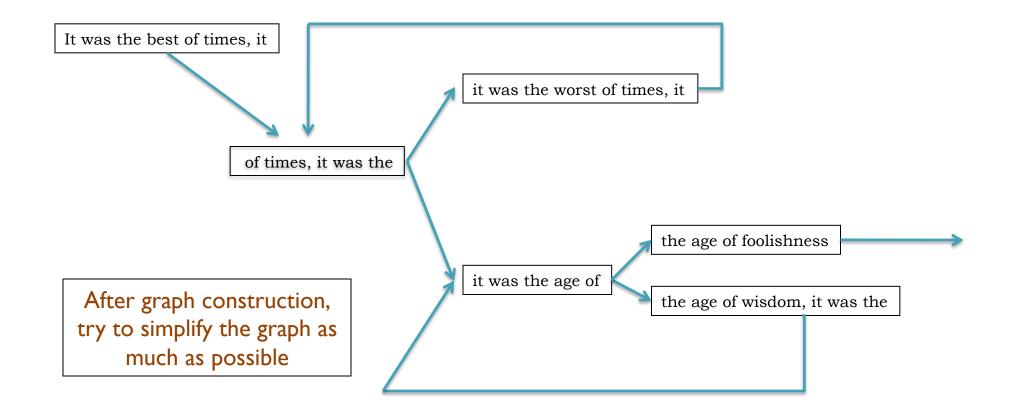

The repeated sequence make the correct reconstruction ambiguous

• It was the best of times, it was the [worst/age]

[Any ideas on how to proceed?]


de Bruijn Graph Construction

- $D_k = (V, E)$
 - V = All length-k subfragments (k < l)
 - E = Directed edges between consecutive subfragments
 - Nodes overlap by k-1 words


- Locally constructed graph reveals the global sequence structure
 - Overlaps between sequences implicitly computed

de Bruijn, 1946 Idury and Waterman, 1995 Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

de Bruijn Graph Assembly

Counting Eulerian Tours $A \rightarrow B \rightarrow D$ ARBRCRDor ARCRBRD

Generally an exponential number of compatible sequences

- Value computed by application of the BEST theorem (Hutchinson, 1975)

$$\mathcal{W}(G,t) = (\det L) \left\{ \prod_{u \in V} (r_u - 1)! \right\} \left\{ \prod_{(u,v) \in E} a_{uv}! \right\}^{-1}$$

L = n x n matrix with r_u - a_{uu} along the diagonal and $-a_{uv}$ in entry uv
 $r_u = d^+(u) + l$ if $u = t$, or $d^+(u)$ otherwise
 a_{uv} = multiplicity of edge from u to v

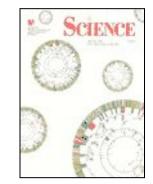
Assembly Complexity of Prokaryotic Genomes using Short Reads. Kingsford C, Schatz MC, Pop M (2010) *BMC Bioinformatics*.

Milestones in Genome Assembly

Nature Vol. 265 February 24 1977

articles

Nucleotide sequence of bacteriophage Φ X174 DNA


F. Sanger, G. M. Air', B. G. Barrell, N. L. Brown', A. R. Coulson, J. C. Fiddes, C. A. Hutchison III', P. M. Slocombe' & M. Smith' MC Laboratory of Melendar Bedge, Hill Read, Cambridge C22 201, UK

A DNA sequence for the generate of hecrityphing #VIT of apportunity, 31,35 melocitate has been determined using the rapid and simple 'plus and wisai' method. The production of the protoin sure of the transe tensmittee for the production of the protoin with mane known genes of the production of the protoin with mane known genes of the protoin method in the state of the state of the protoin spanne, including infinition and accessionation sures for the protoin and RAA. Two pairs of geness are cooled by the more region of DNA using different reading frames.	ensue Device of PA startle same expenses as the mRNA and entrain continue. The life hast relevances that a presence happenet can be included and sequenced. Only one major and and the sequence of the sequence of the sequence of the startle of the presence of the sequence of the origination with the sequence of the sequence of the sequence of the instantion of the presence of the sequence of the sequence entrained as decaused burdle with a sequence constitution the entrained a decaused burdle with a sequence constitution the relevance of the sequence of the sequence on the sequence entrained as decaused burdle with a sequence constitution the relevance and "Phashedic relevances". The it choeses the sequence and the observation of the sequence output of the sequence and the observation of the sequence output of the sequence and the observation of the sequence output of the sequence and the observation of the sequence output of the sequence and the observation of the sequence output of the sequence of the observation of the sequence output of the sequence output of the observation of the sequence output of the sequence output of the observation of the sequence output of the sequence output observation of the sequence output of the sequence output of the sequence output observation output of the sequence output of the sequence output observation of the sequence output of the sequence output observation output of the sequence output of the sequence output observation of the sequence output of the sequence output observation output of the sequence output of the sequence output observation output of the sequence output of the sequence output observation output of the sequence o
This generate of bacteringbage $\Phi X(14)$ is a single-strended, sincular DNA of approximately 5.400 methods colling for pinel novem proteins. The order of these genes, as determined by generic techniques ¹⁻¹ , is $A \in C, D = L, F \in H$. Given F, G and H code for structural proteins of the views capital, and gene Lias defined by seasones work) codes for a small basic reveterin	

1977. Sanger *et al.* Ist Complete Organism 5375 bp

2000. Myers *et al.* Ist Large WGS Assembly. Celera Assembler. 116 Mbp

1995. Fleischmann *et al.* 1st Free Living Organism TIGR Assembler. 1.8Mbp

1998. C.elegans SC Ist Multicellular Organism BAC-by-BAC Phrap. 97Mbp

2001.Venter *et al.*, IHGSC Human Genome Celera Assembler/GigaAssembler. 2.9 Gbp

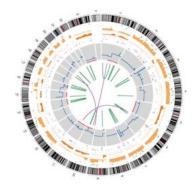
A CONTRACTOR OF CONTRACTOR OF

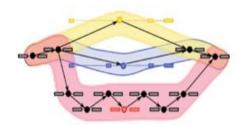
2010. Li *et al.* Ist Large SGS Assembly. SOAPdenovo 2.2 Gbp

Like Dickens, we must computationally reconstruct a genome from short fragments

Current Applications

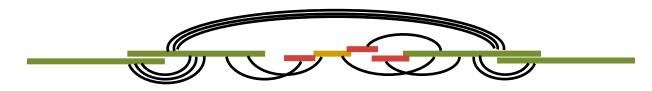
Novel genomes



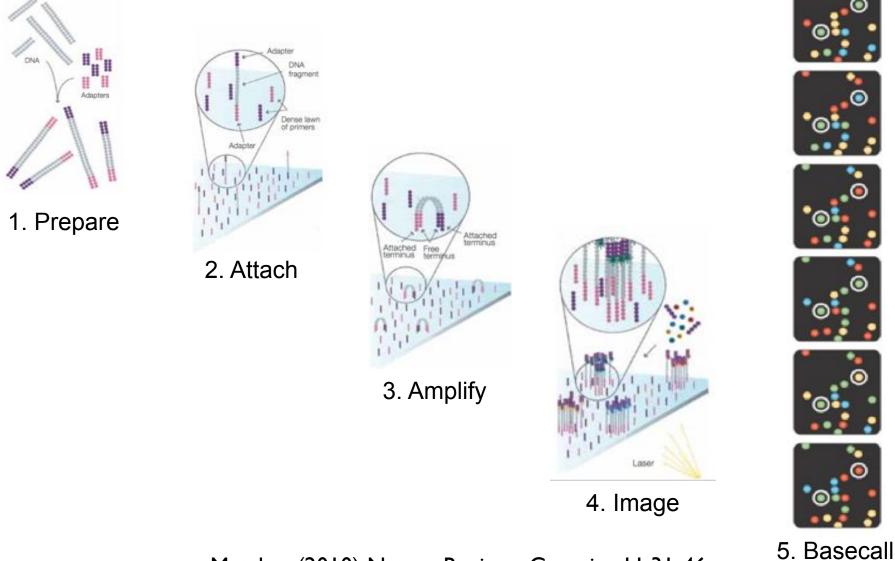

• Metagenomes

- Sequencing assays
 - Structural variations
 - Transcript assembly

Assembling a Genome


2. Construct assembly graph from overlapping reads

...AGCCTAGACCTACAGGATGCGCGACACGT GGATGCGCGACACGTCGCATATCCGGT...

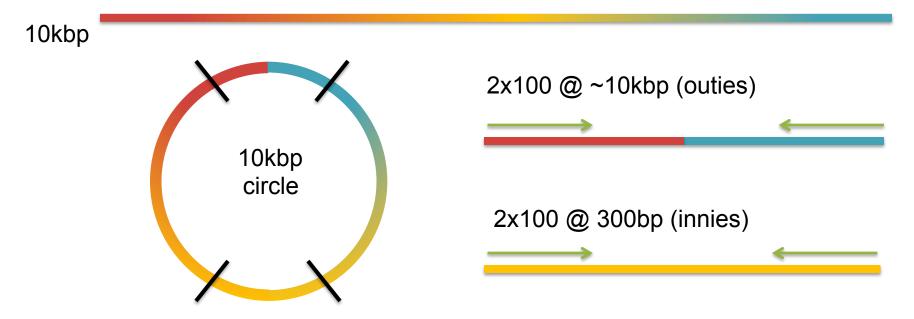

3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links

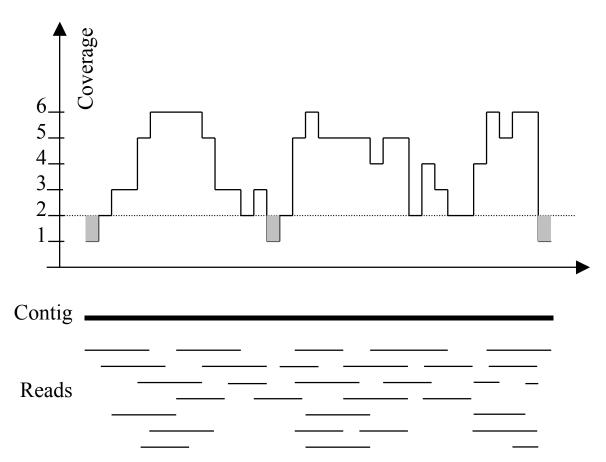
Illumina Sequencing by Synthesis

Metzker (2010) Nature Reviews Genetics 11:31-46 http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf

Paired-end and Mate-pairs


Paired-end sequencing

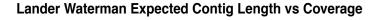
- Read one end of the molecule, flip, and read the other end
- Generate pair of reads separated by up to 500bp with inward orientation

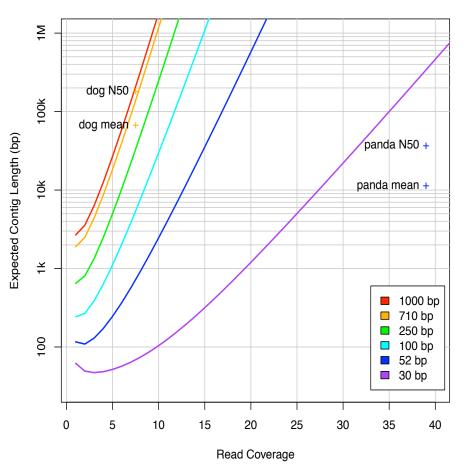


Mate-pair sequencing

- Circularize long molecules (1-10kbp), shear into fragments, & sequence
- Mate failures create short paired-end reads

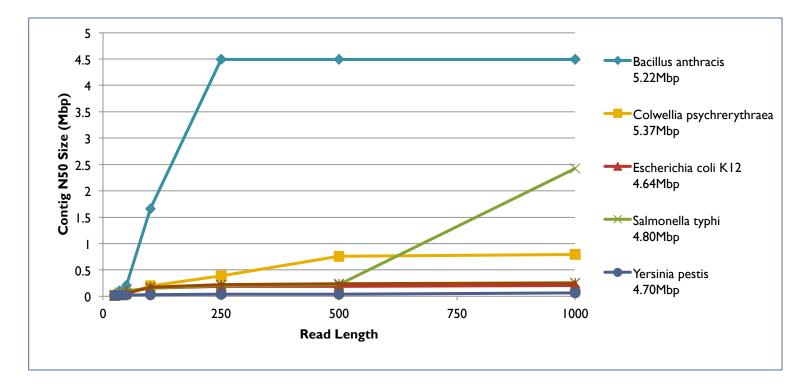
Typical genome coverage



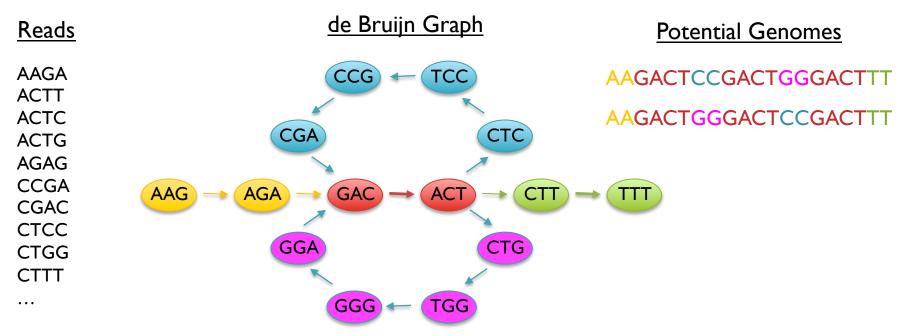

Imagine raindrops on a sidewalk

Coverage and Read Length

Idealized Lander-Waterman model


- Reads start at perfectly random positions
- Poisson distribution in coverage
 - Contigs end when there are no overlapping reads
- Contig length is a function of coverage and read length
 - Effective coverage reduced by o/l
 - Short reads require much higher coverage to reach same expected contig length

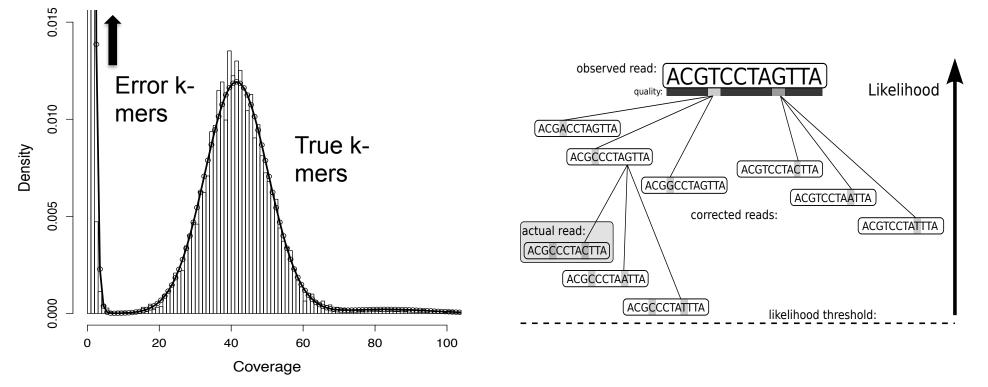
Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (2010) *Genome Research*. 20:1165-1173.


Repeats and Read Length

- Explore the relationship between read length and contig N50 size
 - Idealized assembly of read lengths: 25, 35, 50, 100, 250, 500, 1000
 - Contig/Read length relationship depends on specific repeat composition

Assembly Complexity of Prokaryotic Genomes using Short Reads. Kingsford C, Schatz MC, Pop M (2010) *BMC Bioinformatics*. 11:21.

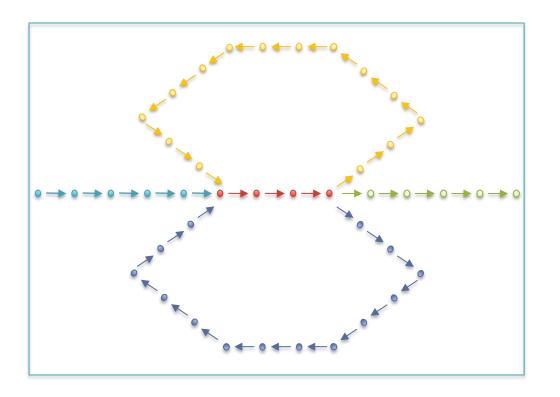
Short Read Assembly

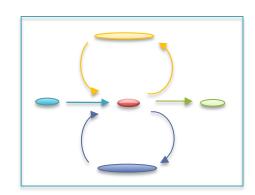

- Genome assembly as finding an Eulerian tour of the de Bruijn graph
 Human genome: >3B nodes, >10B edges
- The new short read assemblers require tremendous computation
 - Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM
 - ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
 - SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM

Error Correction with Quake

- I. Count all "Q-mers" in reads
- Fit coverage distribution to mixture model of errors and regular coverage
- Automatically determines threshold for trusted k-mers

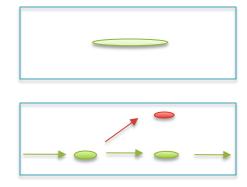
2. Correction Algorithm

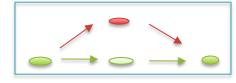

- Considers editing erroneous kmers into trusted kmers in decreasing likelihood
- Includes quality values, nucleotide/nucleotide substitution rate

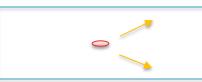


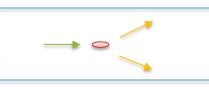
Quake: quality-aware detection and correction of sequencing reads. Kelley, DR, Schatz, MC, Salzberg SL (2010) *Genome Biology*. 11:R116

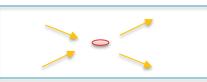
Graph Compression


- After construction, many edges are unambiguous
 - Merge together compressible nodes
 - Error correction reduces number of nodes, number of false edges, and allows for longer word size








Node Types

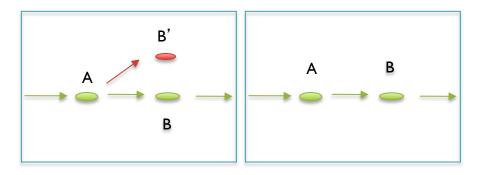
Isolated nodes (10%)

Tips (46%)

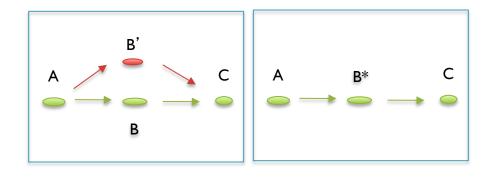
Bubbles/Non-branch (9%)

Dead Ends (.2%)

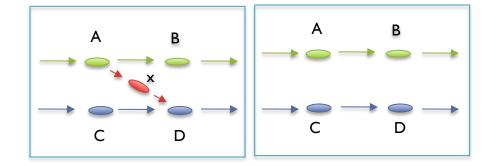
Half Branch (25%)

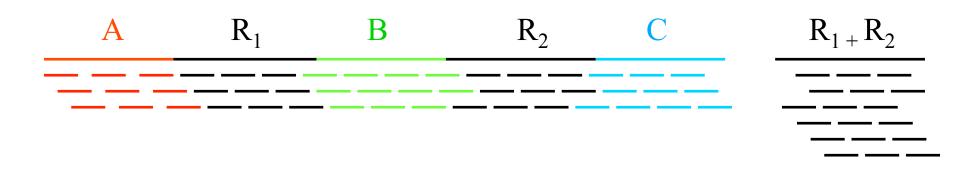

Full Branch (10%)

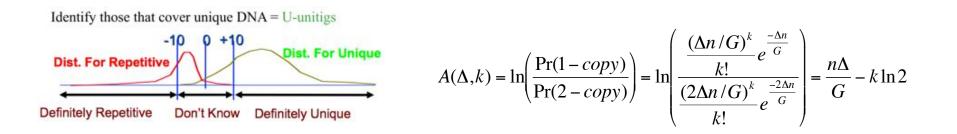
(Chaisson, 2009)


Graph Correction

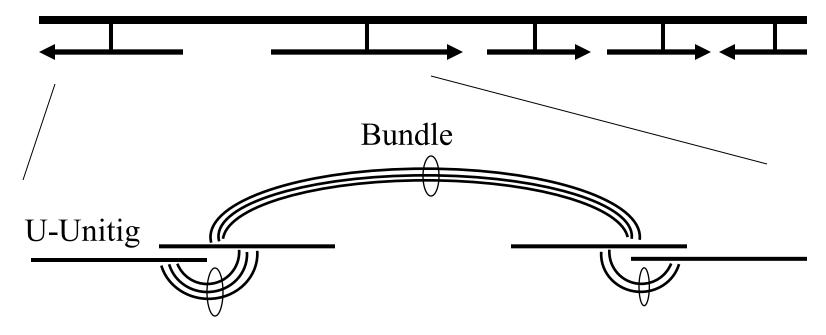
Errors at end of read


• Trim off 'dead-end' tips


- Errors in middle of read
 - Pop Bubbles

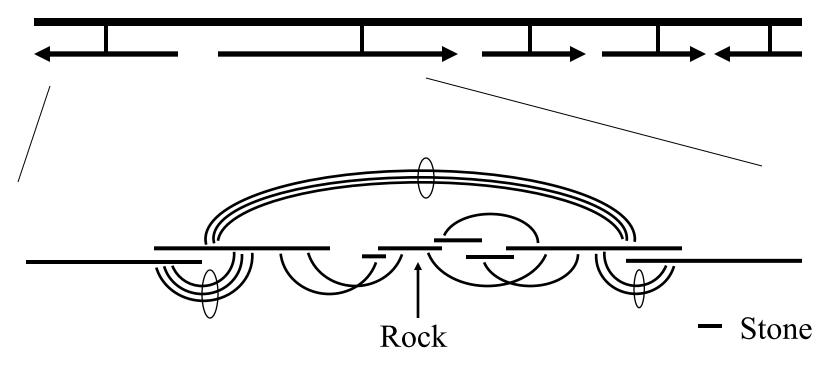

- Chimeric Edges
 - Clip short, low coverage nodes

Coverage Evaluation



- If *n* reads are a uniform random sample of the genome of length *G*, we expect $k=n\Delta/G$ reads to start in a region of length Δ .
 - If we see many more reads than k (if the arrival rate is > A), it is likely to be a collapsed repeat
 - Requires an accurate genome size estimate

Initial Scaffolding


Scaffold

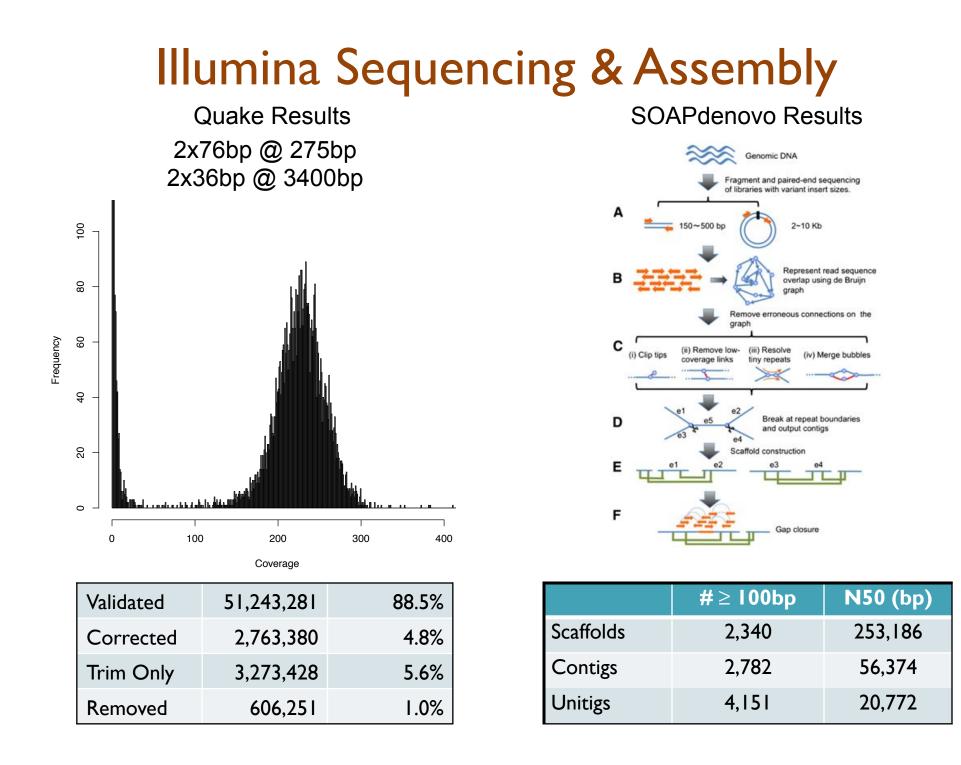
Create an initial scaffold of basic contigs ("unitigs") whose coverage indicates they are not repetitive (A-stat > 5).

Repeat Resolution

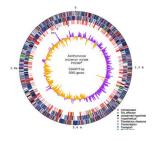
Scaffold

Then add in remaining repetitive contigs based on their mate relationships allowing repetitive sequences to be placed multiple times.

Def: 50% of the genome is in contigs larger than N50

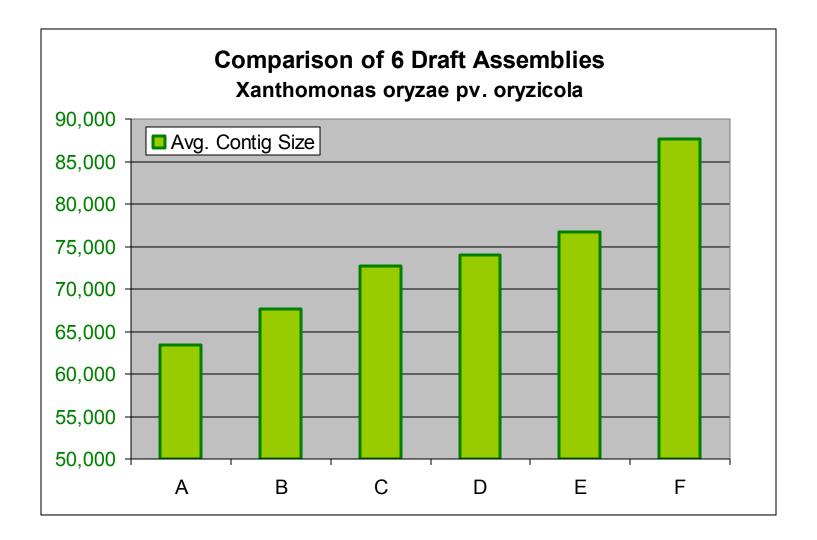

Example:

```
I Mbp genome
Contigs: 300k, 100k, 50k, 45k, 30k, 20k, 15k, 15k, 10k, ....
```

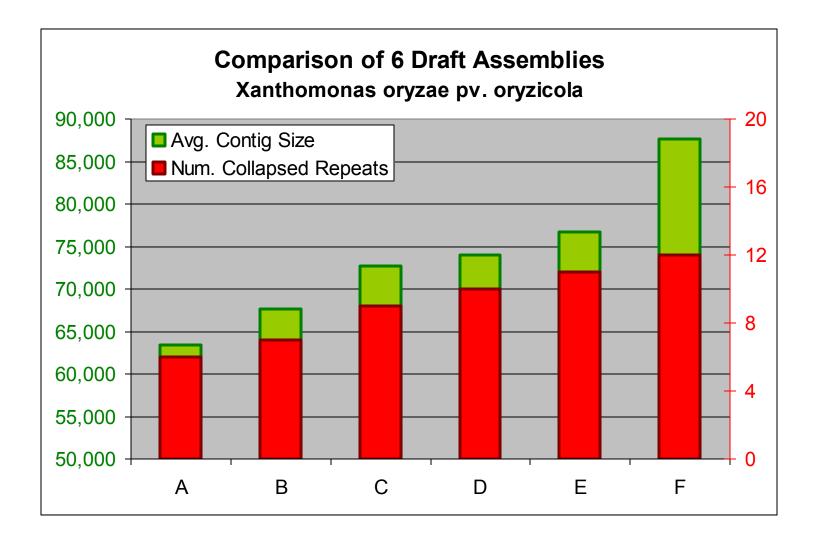

```
N50 size = 30 kbp
(300k+100k+50k+45k+30k = 525k >= 500kbp)
```

Note:

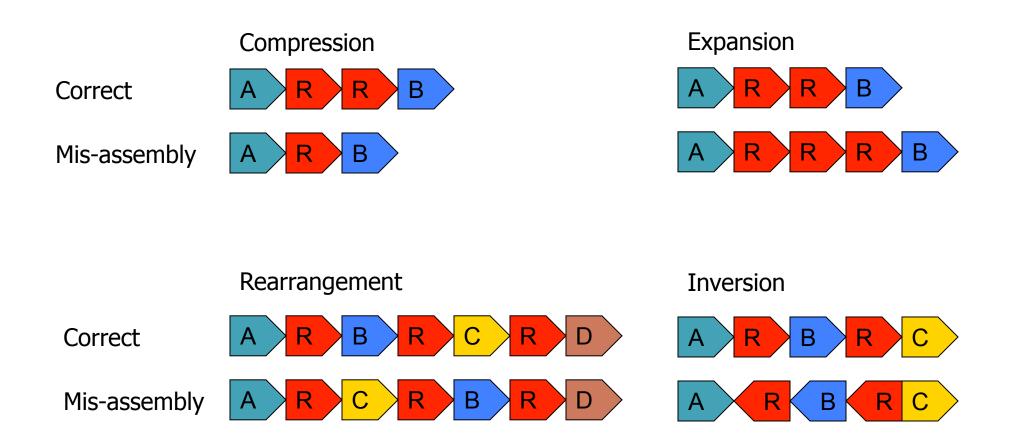
N50 values are only meaningful to compare when base genome size is the same in all cases



Assembly realities



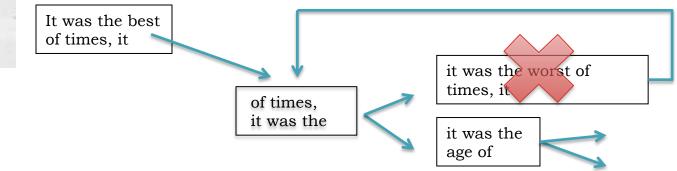
- Contigs are never as large as predicted
 - High coverage is a necessary but not sufficient condition
 - Error correction is required for good assembly
 - Sequencing is basically random, but sequence composition is not
- Repeats control the quality of the assembly
 - Assemblers break contigs at ambiguous repeats
 - Highly repetitive genomes will be highly fragmented
- Assemblers make mistakes
 - Mis-assemblies confuse all downstream analysis
 - Tension between overlap error rate and repeat resolution


Assembly Evaluation

Assembly Evaluation

Mis-assembly Types

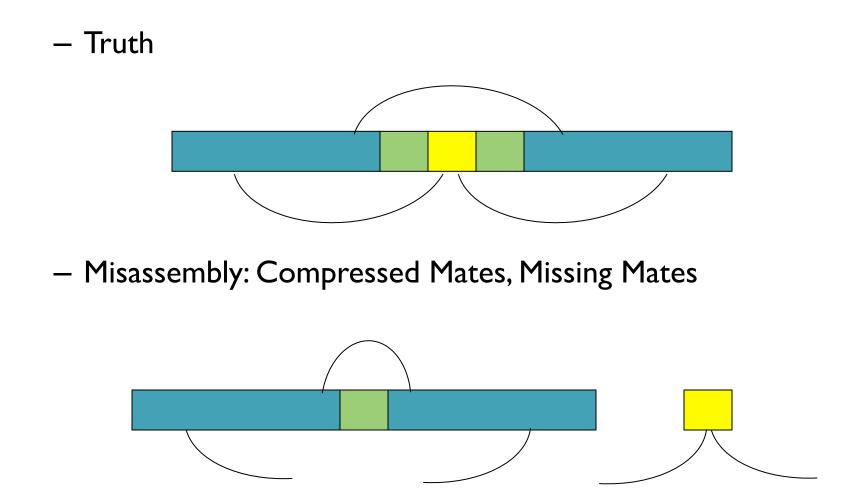
Basic mis-assemblies can be combined into more complicated patterns: Insertions, Deletions, Giant Hairballs


Assembly Forensics

Automatically scan an assembly to locate misassembly signatures for further analysis and correction

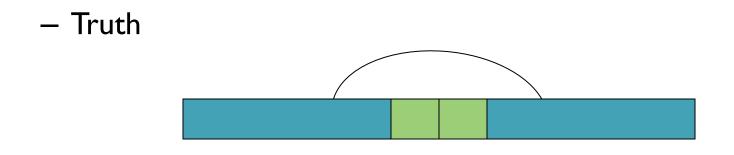
Assembly-validation pipeline

- I. Evaluate Mate Pairs & Libraries
- 2. Evaluate Read Alignments
- 3. Evaluate Read Breakpoints
- 4. Analyze Depth of Coverage

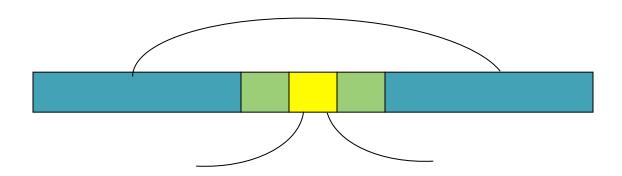


Genome Assembly forensics: finding the elusive mis-assembly.

Phillippy, AM, Schatz, MC, Pop, M. (2008) Genome Biology 9:R55.


Mate-Happiness: asmQC

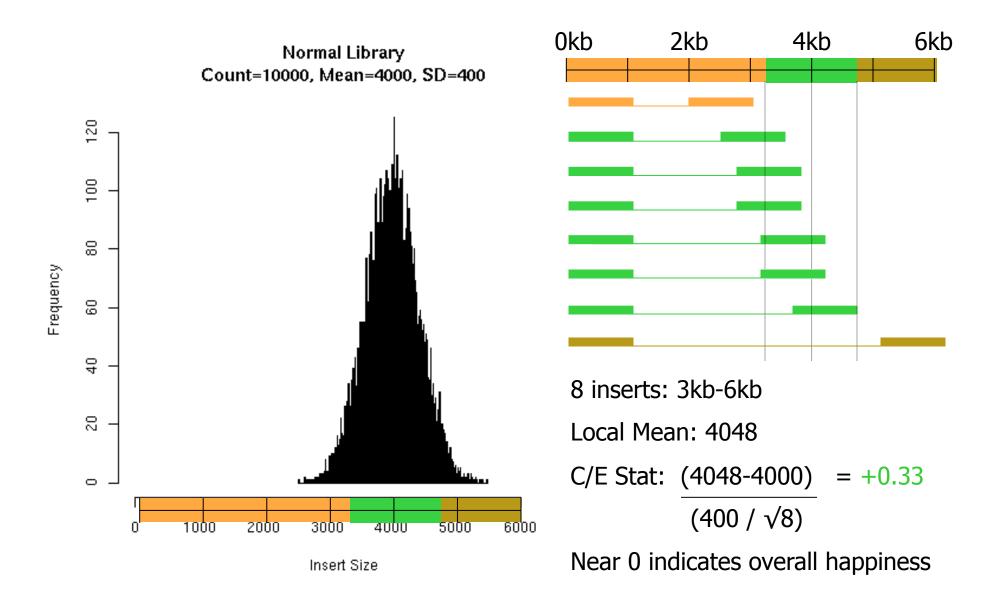
• Excision: Skip reads between flanking repeats



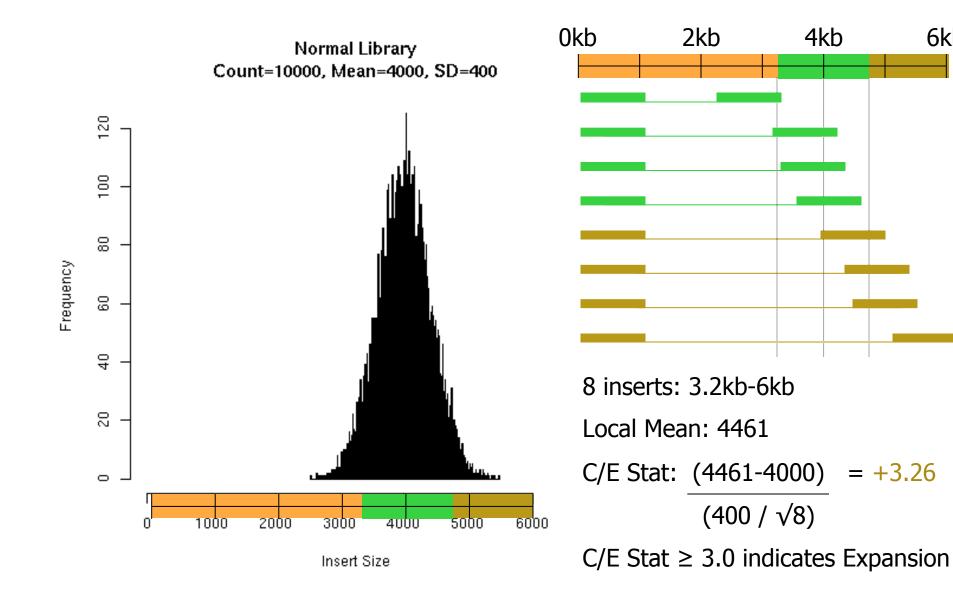
Mate-Happiness: asmQC

• Insertion: Additional reads between flanking repeats

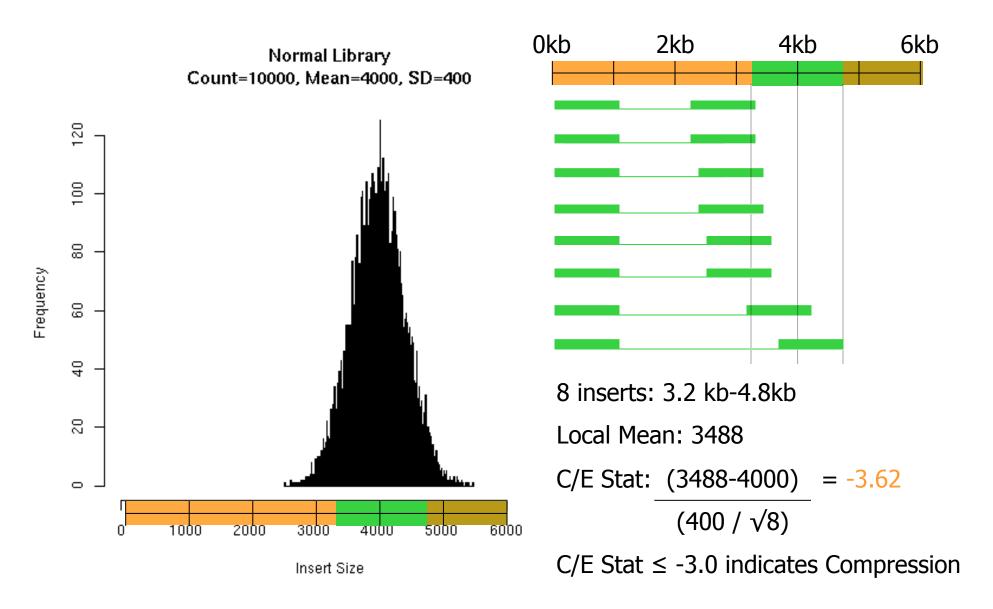
- Misassembly: Expanded Mates, Missing Mates


Mate-Happiness: asmQC

• Rearrangement: Reordering of reads


Note: Unhappy mates may also occur for biological or technical reasons.

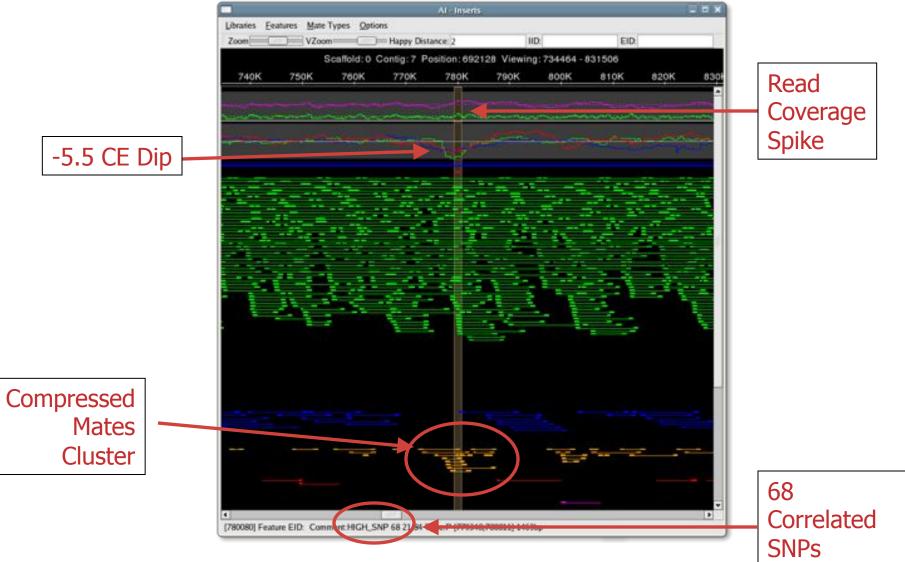
Sampling the Genome



CE Statistic: Expansion

6kb

CE Statistic: Compression



Read Alignment

- Multiple reads with same conflicting base are unlikely
 - Ix QV 30: I/1000 base calling error
 - 2x QV 30: 1/1,000,000 base calling error
 - 3x QV 30: 1/1,000,000,000 base calling error
- Regions of correlated SNPs are likely to be assembly errors or interesting biological events
 - Highly specific metric
- AMOS Tools: analyzeSNPs & clusterSNPs
 - Locate regions with high rate of correlated SNPs
 - Parameterized thresholds:
 - Multiple positions within 100bp sliding window
 - 2+ conflicting reads
 - Cumulative QV >= 40 (1/10000 base calling error)

AGC AGC AGC AGC AGC AGC CTA CTA CTA CTA CTA

Collapsed Repeat

Hawkeye: a visual analytics tool for genome assemblies.

Schatz, MC, Phillippy, AM, Shneiderman, B, Salzberg, SL. (2007) Genome Biology 8:R34.

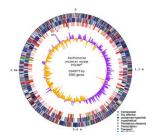

Validation Accuracy

Table 1													
Accuracy of amosvalidate mis-assembly signatures and suspicious regions summarized for 16 bacterial genomes assembled with Phrap													
				Mis-asset	noly signatures		Suspicious regional						
Species	Les	Ctgs.	\$75	Num	Valid	Sara	Num	vera	Save				
8. antivacia	14	87	2	1,336	22	100.0	127	2	100.8				
B. suit	2.4	120	1.0	1,047	30	80.0	158		90.0				
C. burnetil	2.0	55	22	1,375	79	100.0	124	19	100.0				
C. cavlas	1.4	. 270	12	625	16	83.3	50		86.7				
C. Japani	1.0	53	5	290	11	90.0	81	3	60.0				
(3. etherogenes	1.8	632	12	688	22	91.7			100.0				
P. successgenes	4.3	455	20	1,670	27	95.2	256	54	86.7				
£ monocytopenes	2.9	172	3	1,201	5	100.0	201	1	100.0				
M, capricolum	1.0	37	3	83		0.0	1.6		0.8				
N. semetau	0.9	.15		91		16.6	1.3		3.6				
P. marceda	2.7	343	25	1,655	\$2	100.0	201	20	100.0				
P. torritgae	6.4	224	64	2,841	200	95.4	366	55	55.4				
5. apatentae	2.5	127	25	667	53	95.2	112	.58	85.7				
5. autora	2.0	624	-45	1,850	69	97.6	229	18	75.8				
W. pipents	3.3	2017	31	761	92	100.0	1.92	35	100.8				
X. oryawe	5.0	50	153	2,569	379	100.8	500	65	100.8				
Totals	45.8	3412	417	10,949	1,082	96.8	2,242	275	92.0				

Species name, genome length (Len), number of assembled contigs (Ogs), and alignment inferred mis assemblies (Errs) are given in the Tirst four columns. Number of mis-assembles dentifies departures output by amouvalistic (Num) is given in oscilm 5, along with the number of signatures conciding with a known mis-assemblies (Errs) are given in oscilm 6 (Valid), and percentage of known mis-assemblies identified by one or more signatures in column 7 (Sens). The same values are given in columns 8-10 for the suspicious regions output by antisystikate. The suspicious regions represent at least two different, coinciding lines of evidence, whereas the signatures regresent a single line of evidence. A signature or region is deemed 'validated' if its location interval overlaps a mis-assembled region identified by dhadtif. Thus, a single signature or ingoin can identify multiple mis-assembles, and unce wersa, a single mis-assemble (can be devidence).

Phillippy et al. Genome Biology 2008 @:R55 doi:10.1186/gb-2008-9-3-r55

Assembly Summary

Assembly quality depends on

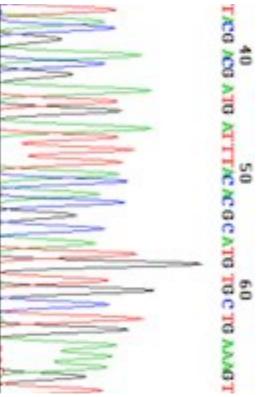
- I. Coverage: low coverage is mathematically hopeless
- 2. Repeat composition: high repeat content is challenging
- 3. Read length: longer reads help resolve repeats
- 4. Error rate: errors reduce coverage, obscure true overlaps
- Assembly is a hierarchical, starting from individual reads, build high confidence contigs/unitigs, incorporate the mates to build scaffolds
 - Extensive error correction is the key to getting the best assembly possible from a given data set
- Watch out for collapsed repeats & other misassemblies
 - Globally/Locally reassemble data from scratch with better parameters & stitch the 2 assemblies together

Break

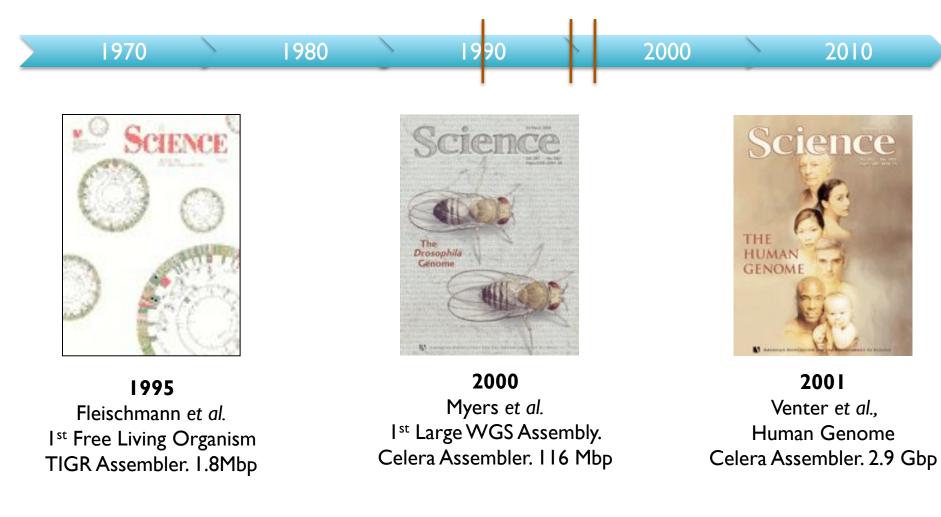
Outline

Part I: Schatz Lab OverviewPart 2: Sequence AlignmentPart 3: Genome Assembly

Part 4: Parallel & Cloud Computing


- Milestones in DNA Sequencing
- Hadoop & Cloud Computing
- Sequence Analysis in the Clouds

970	980	1990		2000		201		
Nature Vol. 365 February 34 1977		487		AT	GC			
articles		-		100				
Nucleotide sequence of ba Φ X174 DNA	acteriophage				-			
F. Sanger, G. M. Air', B. G. Barrell, N. L. Brow C. A. Hutchison III ¹ , P. M. Slocombe ³ & M. Sm MRC Laboratory of Melandar Bology, Hills Read, Cambridge CB2	ith"			100		T		
A DNA sequence for the genome of bacteriophage $\Phi X/74$ of approximately 5,175 nucleosides has been determined using the rapid and simple 'plus and minus' method. The argument identifies many of the features responsible for the preduction of the proteins of the nie how my genes of the organizes, including initiation and termination sites for the proteins and RNAs. Two pairs of genes are routed by the same region of DNA using different reading frames.	strand DNA of ΦX has the same sequence as the mRN certain conditions, will hind ribournes so that a fragment can be isolated and sequenced. Only one was found that this ribourne binding sits sequence to initiation of the gene G protein ¹⁰ (positions 2,162-2). At this stage sequencing techniques using prime with DNA polymerase were being developed ¹⁴ an synthesized a decanacionide with a sequence comple- part of the ribourne binding site. This was used to p	revoluciend aujor state or data it d for the 31 31 Schort " entlary to time into		35.		A		
First genores: of bacteriophage $\Phi N(124)$ is a single-stranded, isolate DNA of approximately 5,400 randomida cooling for sine known proteins. The order of these genes, so determined by genetic techniques ¹⁻¹ , is $A-B-C-D-E-J-F-G-H$. Genes F . G H code for structural proteins of the vivos capid, and gene- tas defined by sequence work) codes for a small basic protein	the intercistronic region between the <i>T</i> and <i>G</i> genese, up polymerase and ¹¹⁹ Paidebel triphospharics ¹¹ . The <i>i</i> th tion sechesique ¹⁶ facilitated the sequence determinant labelled DNA produced. This decaractedecide-prim was also used to develop the plus and reisus method synthetic primers are, however, difficult to prepar	substitu n of the I system Suitable		-		G		
19	77			10 10		C		
Sanger et al.			Radioactive Chain Termination 5000bp / week / person					
I st Complete Organism								
Bacteriopha	$\phi X I 74$					5011		
5375 bp			http://en.wikipedia.org/wiki/File:Sequencing.jpg http://www.answers.com/topic/automated-sequer					

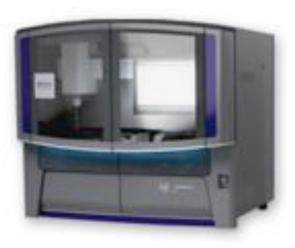

1987 Applied Biosystems markets the ABI 370 as the first automated sequencing machine

http://commons.wikimedia.org/wiki/File:370A_automated_DNA_sequencer.jpg

2010

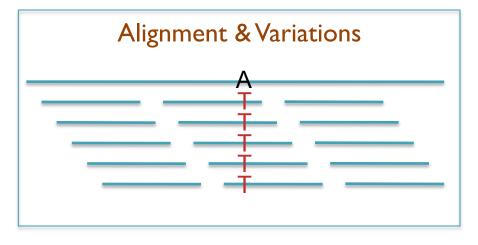
Fluorescent Dye Termination 350bp / lane x 16 lanes = 5600bp / day / machine

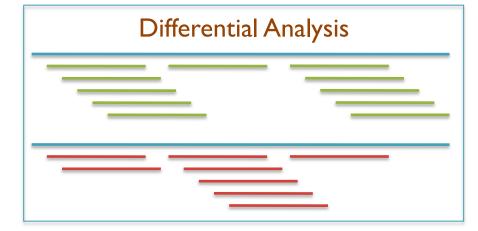
ABI 3700: 500 bp reads x 768 samples / day = 384,000 bp / day. "The machine was so revolutionary that it could decode in a single day the same amount of genetic material that most DNA labs could produce in a year." J. Craig Venter



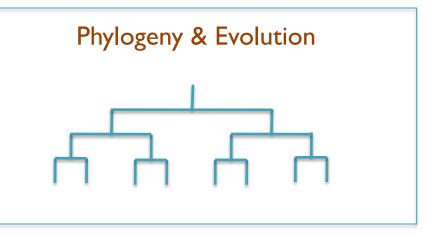
2004 454/Roche *Pyrosequencing* Current Specs (Titanium): IM 400bp reads / run = IGbp / day

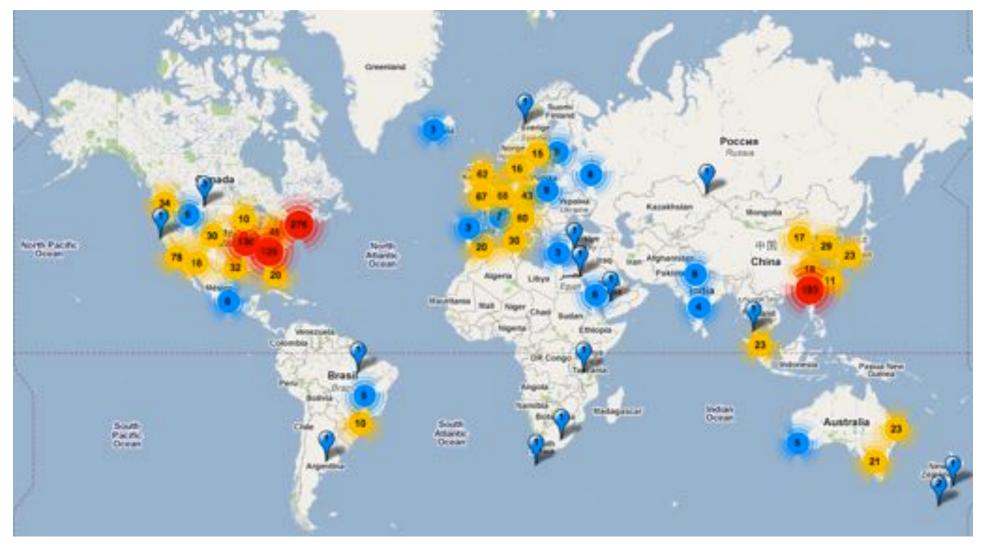
2007


Illumina Sequencing by Synthesis Current Specs (HiSeq 2000): 2.5B 100bp reads / run = 60Gbp / day

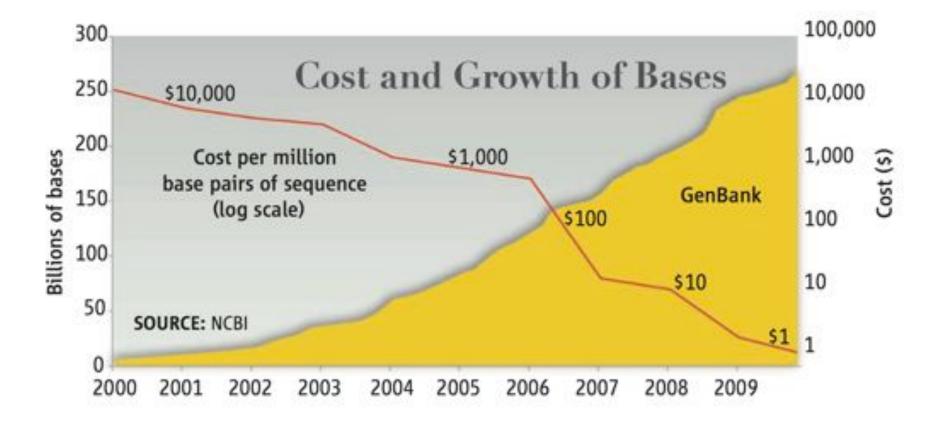


2008 ABI / Life Technologies SOLiD Sequencing Current Specs (5500xl): 5B 75bp reads / run = 30Gbp / day


Second Generation Sequencing Applications



Sequencing Centers



Next Generation Genomics: World Map of High-throughput Sequencers

http://pathogenomics.bham.ac.uk/hts/

DNA Data Tsunami

Current world-wide sequencing capacity exceeds 13Pbp/year and is growing at 5x per year!

"Will Computers Crash Genomics?" Elizabeth Pennisi (2011) Science. 331(6018): 666-668.

Genomics and Parallel Computing

Current world-wide sequencing capacity exceeds 13Pbp/year and is growing at 5x per year!

Our best (only) hope is to use many computers:

- Parallel Computing aka Cloud Computing
- Now your programs will crash on 1000 computers instead of just 1 ⁽²⁾

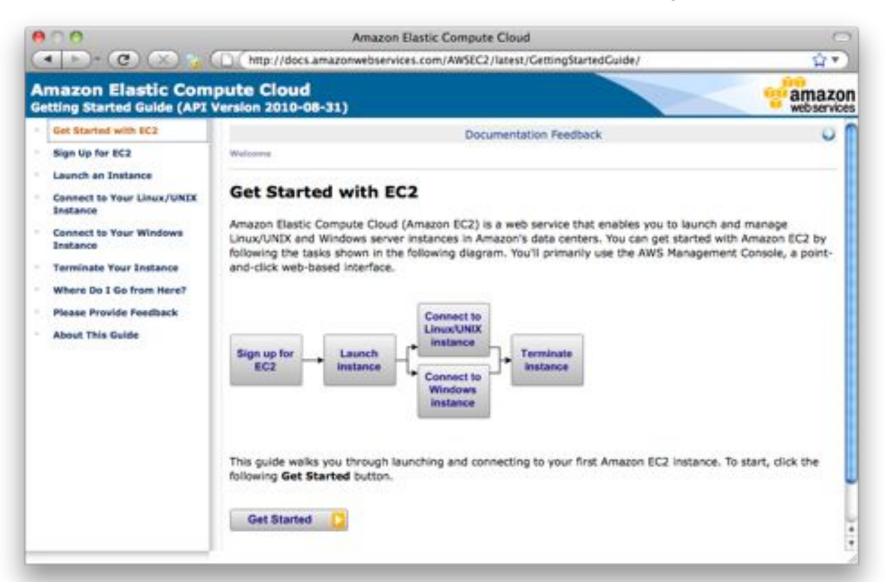
Amazon Web Services

http://aws.amazon.com

- All you need is a credit card, and you can immediately start using one of the largest datacenters in the world
- Elastic Compute Cloud (EC2)
 - On demand computing power
 - Support for Windows, Linux, & OpenSolaris
 - Starting at 2.0¢ / core / hour
- Simple Storage Service (S3)
 - Scalable data storage
 - I5¢ / GB monthly fee
- Plus many others

EC2 Architecture

- Very large pool of machines
 - Effectively infinite resources
 - High-end servers with many cores and many GB RAM
- Machines run in a virtualized environment
 - Amazon can subdivide large nodes into smaller instances
 - You are 100% protected from other users on the machine
 - You get to pick the operating system, all installed software


Amazon Machine Images

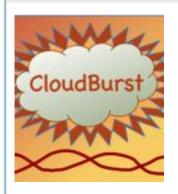
- A few Amazon sponsored images – Suse Linux, Windows
- Many Community Images & Appliances
 - CloudBioLinux: Genomics Appliance
 - Crossbow: Hadoop, Bowtie, SOAPsnp
 - Galaxy: CloudMan
- Build you own
 - Completely customize your environment
 - You results could be totally reproducible

Getting Started

http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/

Hadoop MapReduce

http://hadoop.apache.org


- MapReduce is Google's framework for large data computations
 - Data and computations are spread over thousands of computers
 - Indexing the Internet, PageRank, Machine Learning, etc... (Dean and Ghemawat, 2004)
 - 946 PB processed in May 2010 (Jeff Dean at Stanford, 11.10.2010)
 - Hadoop is the leading open source implementation
 - Developed and used by Yahoo, Facebook, Twitter, Amazon, etc
 - GATK is an alternative implementation specifically for NGS
 - Benefits
 - Scalable, Efficient, Reliable
 - Easy to Program
 - Runs on commodity computers

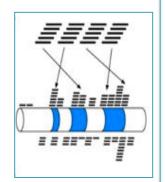
- Challenges
 - Redesigning / Retooling applications
 - Not Condor, Not MPI
 - Everything in MapReduce

Hadoop for NGS Analysis

CloudBurst

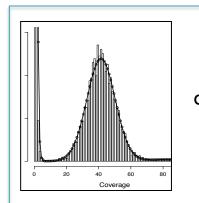
Highly Sensitive Short Read Mapping with MapReduce

> 100x speedup mapping on 96 cores @ Amazon


http://cloudburst-bio.sf.net

(Schatz, 2009)

Myrna


Cloud-scale differential gene expression for RNA-seq

Expression of 1.1 billion RNA-Seq reads in ~2 hours for ~\$66

(Langmead, Hansen, Leek, 2010)

http://bowtie-bio.sf.net/myrna/

Quake

Quality-aware error correction of short reads

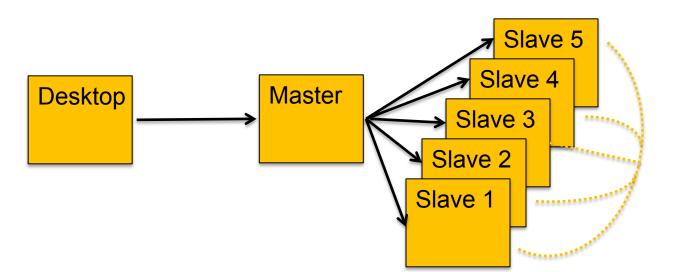
Correct 97.9% of errors with 99.9% accuracy

http://www.cbcb.umd.edu/software/quake/

(Kelley, Schatz, Salzberg, 2010)

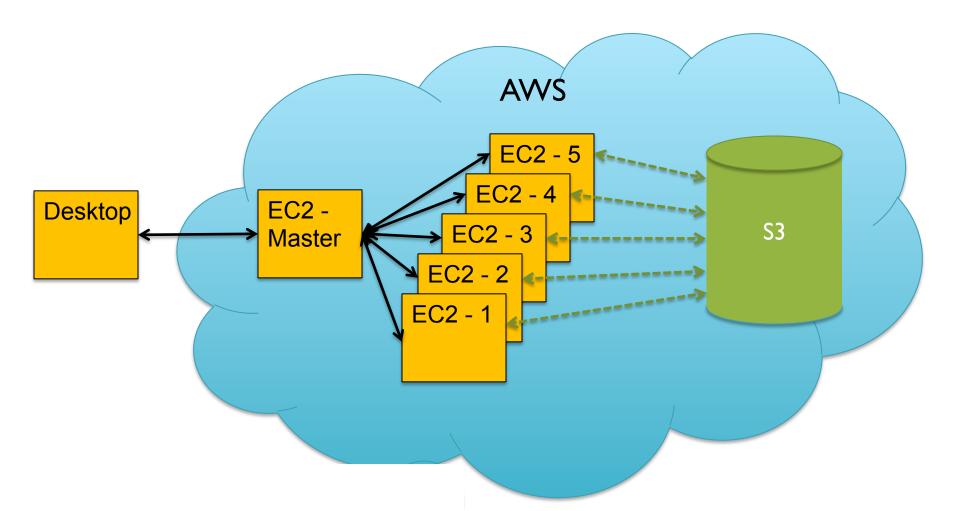
Genome Indexing

Rapid Parallel Construction of Genome Index


Construct the BWT of the human genome in 9 minutes

\$GATTAC<u>A</u> A\$GATTA<u>C</u> ACA\$GAT<u>T</u> ATTACA\$<u>G</u> CA\$GATT<u>A</u> GATTACA<u>£</u> TACA\$GA<u>T</u> TTACA\$G<u>A</u>

(Menon, Bhat, Schatz, 2011*)


http://code.google.com/p/ genome-indexing/

System Architecture

- Hadoop Distributed File System (HDFS)
 - Data files partitioned into large chunks (64MB), replicated on multiple nodes
 - Computation moves to the data, rack-aware scheduling
- Hadoop MapReduce system won the 2009 GreySort Challenge
 - Sorted 100 TB in 173 min (578 GB/min) using 3452 nodes and 4x3452 disks
 - Provides many disks in addition to many cores

Hadoop on AWS

If you don't have 1000s of machines, rent them from Amazon

- After machines spool up, ssh to master as if it was a local machine.
- Use S3 for persistent data storage, with very fast interconnect to EC2.

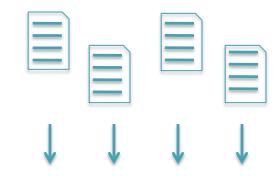
Parallel Algorithm Spectrum

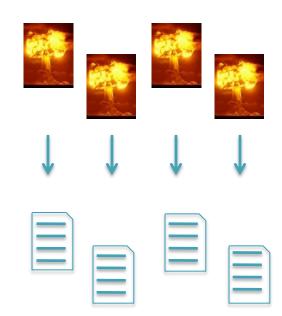
Embarrassingly Parallel

Map-only Each item is Independent

Loosely Coupled

MapReduce Independent-Sync-Independent

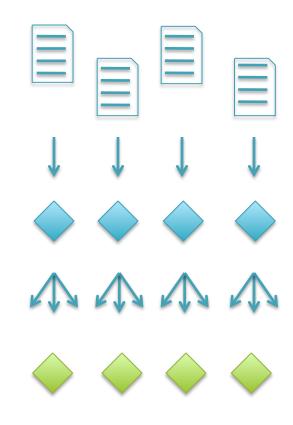

Tightly Coupled



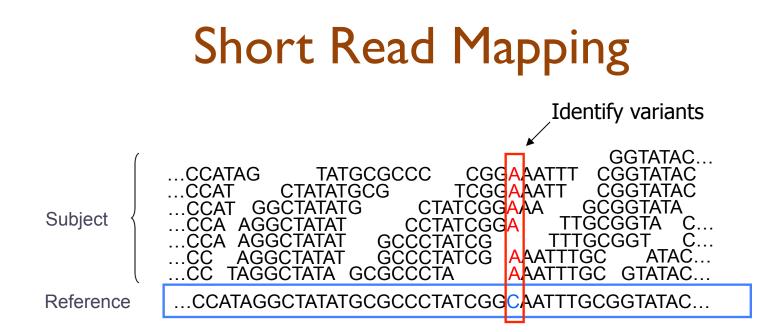
Iterative MapReduce Constant Sync

I. Embarrassingly Parallel

- Batch computing
 - Each item is independent
 - Split input into many chunks
 - Process each chunk separately on a different computer
- Challenges
 - Distributing work, load balancing, monitoring & restart
- Technologies
 - Condor, Sun Grid Engine
 - Amazon Simple Queue



Elementary School Dance


2. Loosely Coupled

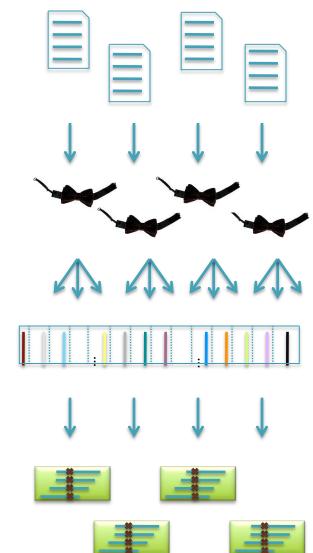
- Divide and conquer
 - Independently process many items
 - Group partial results
 - Scan partial results into final answer
- Challenges
 - Batch computing challenges
 - + Shuffling of huge datasets
- Technologies
 - Hadoop, Elastic MapReduce, Dryad
 - Parallel Databases

Junior High Dance

• Given a reference and many subject reads, report one or more "good" end-toend alignments per alignable read

Methyl-Seq

Hi-C-Seq

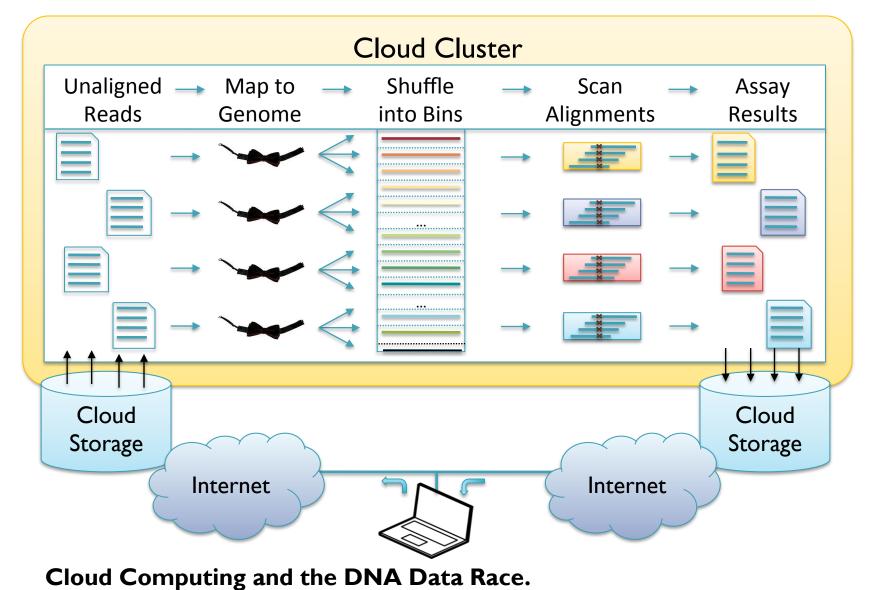

- Find where the read most likely originated
- Fundamental computation for many assays
 - Genotyping
 RNA-Seq
 - Structural Variations Chip-Seq
- Desperate need for scalable solutions
 - Single human requires >1,000 CPU hours / genome

http://bowtie-bio.sourceforge.net/crossbow

- Align billions of reads and find SNPs
 - Reuse software components: Hadoop Streaming
- Map: Bowtie (Langmead et al., 2009)
 - Find best alignment for each read
 - Emit (chromosome region, alignment)
- Shuffle: Hadoop
 - Group and sort alignments by region
- Reduce: SOAPsnp (Li et al., 2009)
 - Scan alignments for divergent columns
 - Accounts for sequencing error, known SNPs

Performance in Amazon EC2

http://bowtie-bio.sourceforge.net/crossbow


	Asian Individual Genome		
Data Loading	3.3 B reads	106.5 GB	\$10.65
Data Transfer	lh:15m	40 cores	\$3.40
Setup	0h : I 5m	320 cores	\$13.94
Alignment	Ih : 30m	320 cores	\$41.82
Variant Calling	I h : 00m	320 cores	\$27.88
End-to-end	4h : 00m		\$97.69

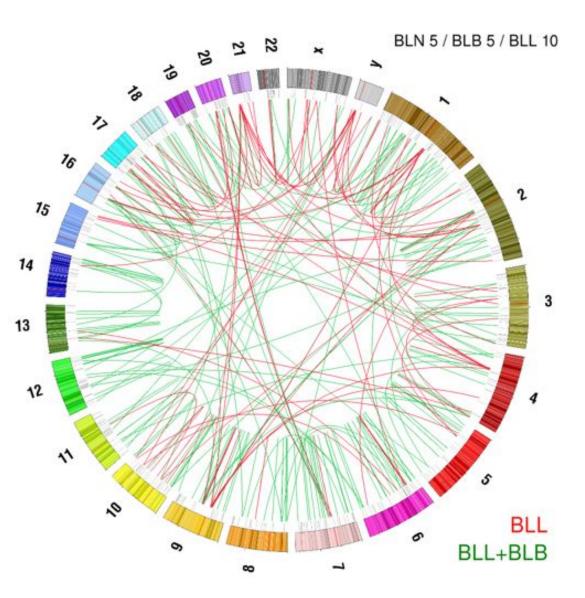
Discovered 3.7M SNPs in one human genome for ~\$100 in an afternoon. Accuracy validated at >99%

Searching for SNPs with Cloud Computing.

Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology. 10:R134

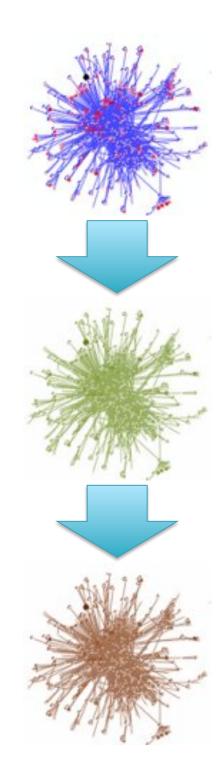
Map-Shuffle-Scan for Genomics

Schatz, MC, Langmead B, Salzberg SL (2010) Nature Biotechnology. 28:691-693


Jnomics Structural Variations

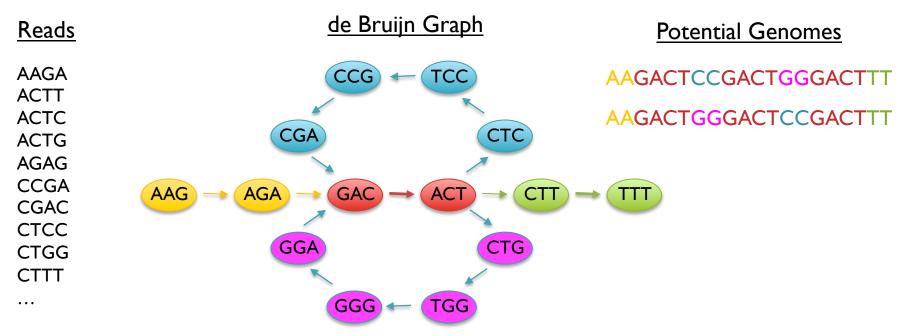
Circos plot of high confidence SVs specific to esophageal cancer sample

- Red: SVs specific to tumor
- Green: SVs in both diseased and tumor samples


Detailed analysis of disrupted genes and fusion genes in progress

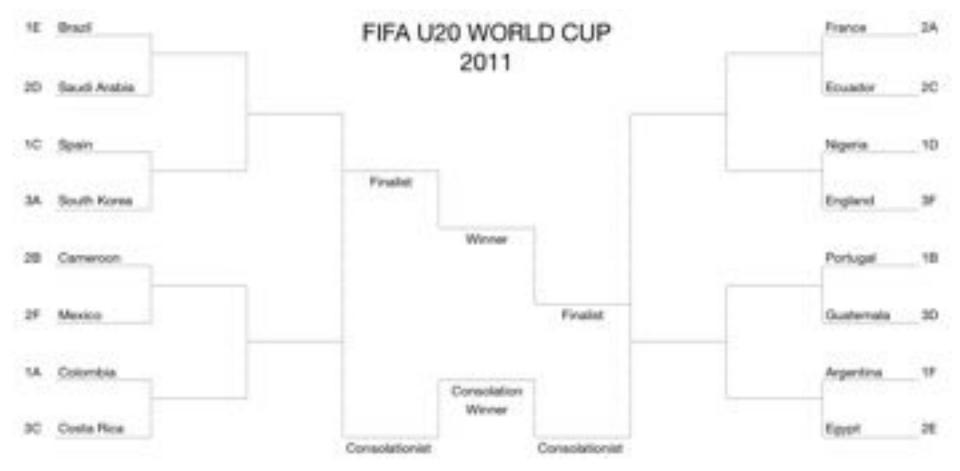
 Preliminary analysis shows many promising hits to known cancer genes

3. Tightly Coupled


- Computation that cannot be partitioned
 - Graph Analysis
 - Molecular Dynamics
 - Population simulations
- Challenges
 - Loosely coupled challenges
 - + Parallel algorithms design
- Technologies
 - MPI
 - MapReduce, Dryad, Pregel

High School Dance

Short Read Assembly

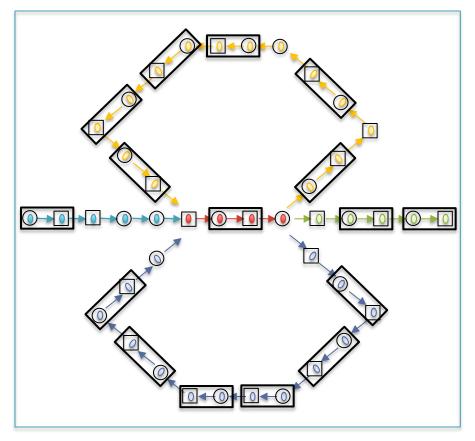


- Genome assembly as finding an Eulerian tour of the de Bruijn graph
 Human genome: >3B nodes, >10B edges
- The new short read assemblers require tremendous computation
 - Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM
 - ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
 - SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM

Warmup Exercise

Who here was born closest to Oct 3?

- You can only compare to I other person at a time

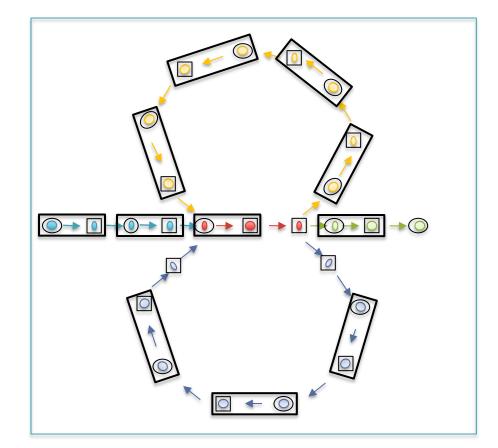

Find winner among 16 teams in just 4 rounds

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign (H) (T) to each compressible node
- Compress (Ĥ)→T links

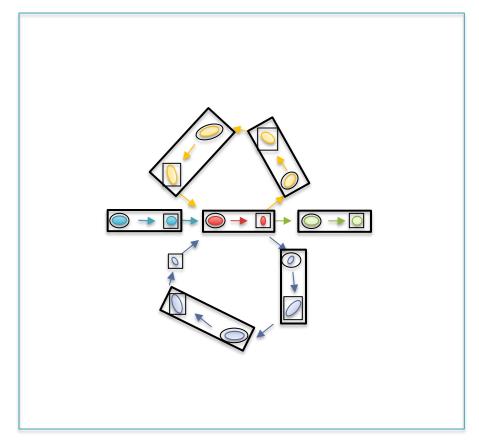

Initial Graph: 42 nodes

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign (H)/ T to each compressible node
- Compress $(H) \rightarrow T$ links


Round 1: 26 nodes (38% savings)

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign (H)/ T to each compressible node
- Compress $(H) \rightarrow T$ links


Round 2: 15 nodes (64% savings)

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign (H) / T to each compressible node
- Compress $(H) \rightarrow T$ links

Round 2: 8 nodes (81% savings)

Challenges

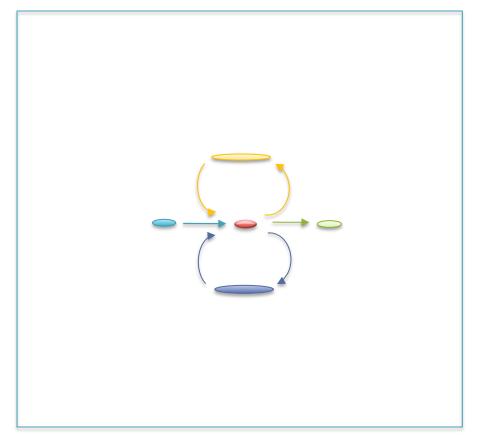
- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign (H)/ T to each compressible node
- Compress $(H) \rightarrow T$ links

Round 3: 6 nodes (86% savings)

Challenges


- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

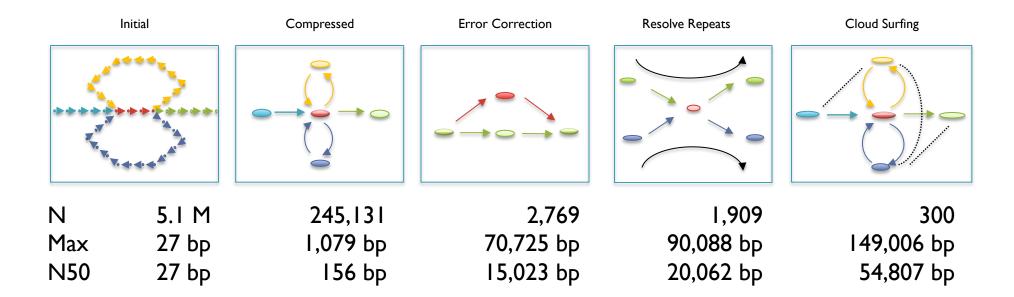
- Randomly assign (H) / T to each compressible node
- Compress $(H) \rightarrow T$ links

Performance

- Compress all chains in log(S) rounds

Round 4: 5 nodes (88% savings)

Randomized Speed-ups in Parallel Computation.


Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Contrail

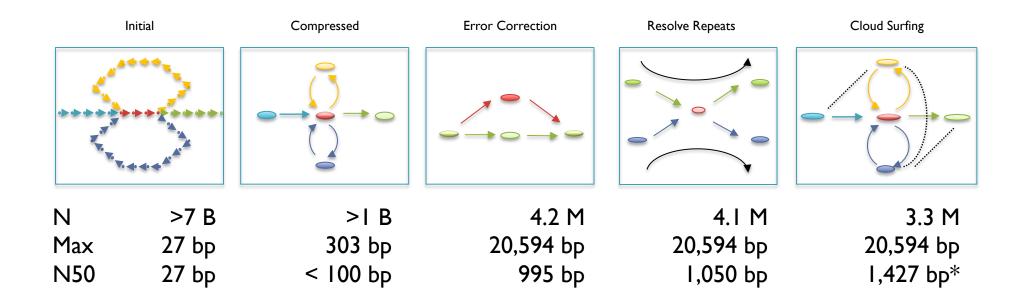
http://contrail-bio.sourceforge.net

De novo bacterial assembly

- Genome: E. coli K12 MG1655, 4.6Mbp
- Input: 20.8M 36bp reads, 200bp insert (~150x coverage)
- Preprocessor: Quake Error Correction

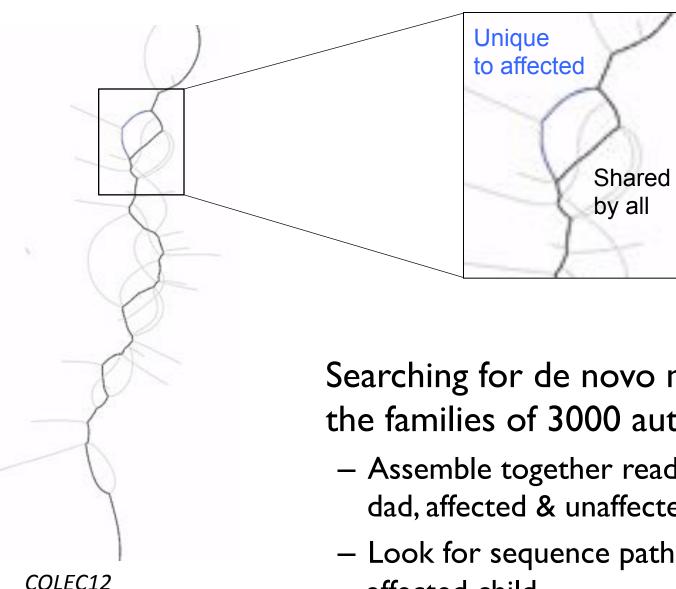
Assembly of Large Genomes with Cloud Computing.

Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.



Contrail http://contrail-bio.sourceforge.net

De novo Assembly of the Human Genome


- Genome: African male NA18507 (SRA000271, Bentley et al., 2008)
- Input: 3.5B 36bp reads, 210bp insert (~40x coverage)

Assembly of Large Genomes with Cloud Computing.

Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

De novo mutations and de Bruijn Graphs

C->A

Searching for de novo mutations in the families of 3000 autistic children.

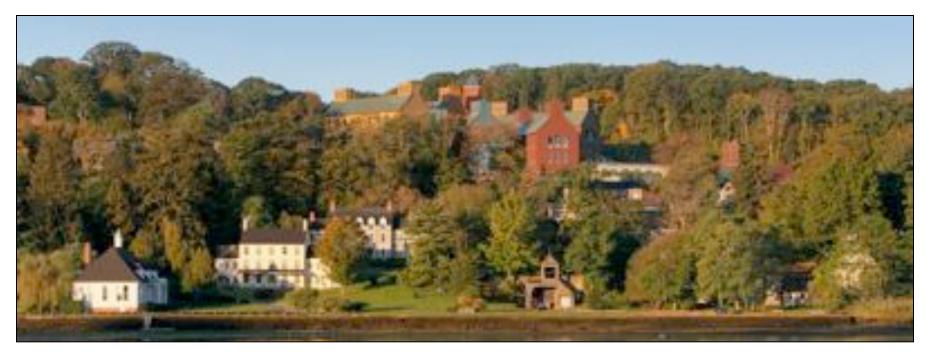
- Assemble together reads from mom, dad, affected & unaffected children
- Look for sequence paths unique to affected child

Summary

- We are entering the digital age of biology
 - Next generation sequencing, microarrays, mass spectrometry, microscopy, ecology, etc
 - Parallel computing may be our only hope for keeping up with the pace of advance
- Modern biology requires (is) quantitative biology
 - Computational, mathematical, and statistical techniques applied to analyze, integrate, and interpret biological sensor data
- Don't let the data tsunami crash on you
 - Study, practice, collaborate with quantitative techniques

WATSON SCHOOL of BIOLOGICAL SCIENCES

Since opening in 1999, the WSBS has become a leading PhD program in the biological sciences, one whose fresh approach is quickly being emulated by other programs across the country.


- An innovative Ph.D. program designed for exceptional students
 - Approximately four years from matriculation to Ph.D. degree award
 - A first year with course work and laboratory rotations in separate phases
 - Emphasis on the principles of scientific reasoning and logic

• Learn more: http://www.cshl.edu/gradschool

Acknowledgements

Schatzlab Mitch Bekritsky Matt Titmus Hayan Lee James Gurtowski Anirudh Aithal Rohith Menon Goutham Bhat <u>CSHL</u> Dick McCombie Melissa Kramer Eric Antonio Mike Wigler Zach Lippman Doreen Ware Ivan Iossifov <u>JHU</u> Steven Salzberg Ben Langmead Jeff Leek

<u>NBACC</u> Adam Phillipy Sergey Koren Univ. of Maryland Mihai Pop Art Delcher Jimmy Lin David Kelley Dan Sommer Cole Trapnell

Thank You!

http://schatzlab.cshl.edu @mike_schatz